Your browser doesn't support javascript.
loading
Enhanced Ferroelectric and Piezoelectric Properties of (1-x)PMN-xPT Ceramics Based on a Partial Oxalate Process.
Kim, Jinhwan; Yoon, Sanghyun; Ji, Jae-Hoon; Ko, Young-Ho; Cho, Kyung-Ho; Lee, Sang-Kwon; Koh, Jung-Hyuk.
Afiliação
  • Kim J; School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea. kjh2203kjh@naver.com.
  • Yoon S; School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea. moon_light90@naver.com.
  • Ji JH; School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea. hoon2441@naver.com.
  • Ko YH; Agency for Defense Development, Daejeon 34186, Korea. kohjunghyuk@hanmail.net.
  • Cho KH; Agency for Defense Development, Daejeon 34186, Korea. redskin99@naver.com.
  • Lee SK; Department of Physics, Chung-Ang University, Seoul 06974, Korea. sangkwonlee@cau.ac.kr.
  • Koh JH; School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea. jhkoh@cau.ac.kr.
Materials (Basel) ; 11(11)2018 Nov 12.
Article em En | MEDLINE | ID: mdl-30424490
The pyrochlore phase in ferroelectric and piezoelectric materials is the main obstacle device application due to its poor electrical properties. Especially, the pyrochlore phase is frequently observed in the perovskite-based metal-oxide materials including piezoelectric and ferroelectric ceramics, which are based on solid-state reaction methods for fabrication. To overcome these problems, advanced innovative methods such as partial oxalate process will be investigated. In this method, crystalized magnesium niobite (MN) and lead titanate (PT) powders will be coated with a certain amount of lead oxalate and, then, the calcination process can be carried out to form the PMN-PT without pyrochlore phase. In this study, (1-x)PMN-xPT ceramics near the morphotropic phase boundary (MPB), with compositions of x = 0.25⁻0.40, have been prepared employing the partial oxalate method at various temperatures. The crystalline, microstructure, and piezoelectric properties of (1-x)PMN-xPT ceramics depending on the sintering temperature were intensively investigated and discussed. By optimizing the sintering temperature and compositions from the PMN-PT ceramics, the maximum value of the piezoelectric charge coefficient (d33) of 665pC/N, planar electromechanical coupling factor (kp) of 77.8%, dielectric constant (εr) of 3230, and remanent polarization (Pr) of 31.67 µC/cm² were obtained.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article