Your browser doesn't support javascript.
loading
Interferon-γ Receptor 1 and GluR1 upregulated in motor neurons of symptomatic hSOD1G93A mice.
Sengupta, Saikata; Le, Thanh Tu; Adam, Adam; Tadic, Vedrana; Stubendorff, Beatrice; Keiner, Silke; Kloss, Linda; Prell, Tino; Witte, Otto W; Grosskreutz, Julian.
Afiliação
  • Sengupta S; Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
  • Le TT; Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
  • Adam A; Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
  • Tadic V; Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
  • Stubendorff B; Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
  • Keiner S; Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
  • Kloss L; Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
  • Prell T; Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
  • Witte OW; Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
  • Grosskreutz J; Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
Eur J Neurosci ; 49(1): 62-78, 2019 01.
Article em En | MEDLINE | ID: mdl-30457201
ABSTRACT
Motor neurons are markedly vulnerable to excitotoxicity mostly by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) stimulation and are principal targets in the neurodegenerative disease Amyotrophic Lateral Sclerosis. Interferon-gamma (IFN-γ), a pro-inflammatory cytokine, can independently cause neuronal dysfunction by triggering calcium influx through a calcium-permeable complex of IFN-γ receptor 1(IFNGR1) subunit and AMPAR subunit GluR1. This receptor complex is formed via a non-canonical neuron-specific IFN-γ pathway that involves Jak1/Stat1 and Protein Kinase A. In this study, we explore the expression of the pathway's participants for the first time in the hSOD1G93A Amyotrophic Lateral Sclerosis mouse model. Elevated IFNGR1 and GluR1 are detected in motor neurons of hSOD1G93A symptomatic mice ex vivo, unlike the downstream targets - Jak1, Stat1, and Protein Kinase A. We, also, determine effects of IFN-γ alone or in the presence of an excitotoxic agent, kainate, on motor neuron survival in vitro. IFN-γ induces neuronal damage, but does not influence kainate-mediated excitotoxicity. Increased IFNGR1 can most likely sensitize motor neurons to excitotoxic insults involving GluR1 and/or pathways mediated by IFN-γ, thus, serving as a potential direct link between neurodegeneration and inflammation in Amyotrophic Lateral Sclerosis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medula Espinal / Receptores de Interferon / Receptores de AMPA / Esclerose Lateral Amiotrófica / Neurônios Motores Tipo de estudo: Diagnostic_studies Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medula Espinal / Receptores de Interferon / Receptores de AMPA / Esclerose Lateral Amiotrófica / Neurônios Motores Tipo de estudo: Diagnostic_studies Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article