Structural diversity across arbuscular mycorrhizal, ectomycorrhizal, and endophytic plant-fungus networks.
BMC Plant Biol
; 18(1): 292, 2018 Nov 21.
Article
em En
| MEDLINE
| ID: mdl-30463525
BACKGROUND: Below-ground linkage between plant and fungal communities is one of the major drivers of terrestrial ecosystem dynamics. However, we still have limited knowledge of how such plant-fungus associations vary in their community-scale properties depending on fungal functional groups and geographic locations. METHODS: By compiling a high-throughput sequencing dataset of root-associated fungi in eight forests along the Japanese Archipelago, we performed a comparative analysis of arbuscular mycorrhizal, ectomycorrhizal, and saprotrophic/endophytic associations across a latitudinal gradient from cool-temperate to subtropical regions. RESULTS: In most of the plant-fungus networks analyzed, host-symbiont associations were significantly specialized but lacked "nested" architecture, which has been commonly reported in plant-pollinator and plant-seed disperser networks. In particular, the entire networks involving all functional groups of plants and fungi and partial networks consisting of ectomycorrhizal plant and fungal species/taxa displayed "anti-nested" architecture (i.e., negative nestedness scores) in many of the forests examined. Our data also suggested that geographic factors affected the organization of plant-fungus network structure. For example, the southernmost subtropical site analyzed in this study displayed lower network-level specificity of host-symbiont associations and higher (but still low) nestedness than northern localities. CONCLUSIONS: Our comparative analyses suggest that arbuscular mycorrhizal, ectomycorrhizal, and saprotrophic/endophytic plant-fungus associations often lack nested network architecture, while those associations can vary, to some extent, in their community-scale properties along a latitudinal gradient. Overall, this study provides a basis for future studies that will examine how different types of plant-fungus associations collectively structure terrestrial ecosystems.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Plantas
/
Simbiose
/
Micorrizas
País/Região como assunto:
Asia
Idioma:
En
Ano de publicação:
2018
Tipo de documento:
Article