Your browser doesn't support javascript.
loading
Multiple Facets of Marine Invertebrate Conservation Genomics.
Lopez, Jose V; Kamel, Bishoy; Medina, Mónica; Collins, Timothy; Baums, Iliana B.
Afiliação
  • Lopez JV; Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida 33004, USA; email: joslo@nova.edu.
  • Kamel B; Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico 87131, USA; email: bishoyh@unm.edu.
  • Medina M; Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; email: mum55@psu.edu , baums@psu.edu.
  • Collins T; Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA; email: collinst@fiu.edu.
  • Baums IB; Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; email: mum55@psu.edu , baums@psu.edu.
Annu Rev Anim Biosci ; 7: 473-497, 2019 02 15.
Article em En | MEDLINE | ID: mdl-30485758
Conservation genomics aims to preserve the viability of populations and the biodiversity of living organisms. Invertebrate organisms represent 95% of animal biodiversity; however, few genomic resources currently exist for the group. The subset of marine invertebrates includes the most ancient metazoan lineages and possesses codes for unique gene products and possible keys to adaptation. The benefits of supporting invertebrate conservation genomics research (e.g., likely discovery of novel genes, protein regulatory mechanisms, genomic innovations, and transposable elements) outweigh the various hurdles (rare, small, or polymorphic starting materials). Here we review best conservation genomics practices in the laboratory and in silico when applied to marine invertebrates and also showcase unique features in several case studies of acroporid corals, crown-of-thorns starfish, apple snails, and abalone. Marine conservation genomics should also address how diversity can lead to unique marine innovations, the impact of deleterious variation, and how genomic monitoring and profiling could positively affect broader conservation goals (e.g., value of baseline data for in situ/ex situ genomic stocks).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Conservação dos Recursos Naturais / Invertebrados Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Conservação dos Recursos Naturais / Invertebrados Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article