Your browser doesn't support javascript.
loading
Label-Free Optical Detection of DNA Translocations through Plasmonic Nanopores.
Verschueren, Daniel V; Pud, Sergii; Shi, Xin; De Angelis, Lorenzo; Kuipers, L; Dekker, Cees.
Afiliação
  • Verschueren DV; Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands.
  • Pud S; Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands.
  • Shi X; Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands.
  • De Angelis L; Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China.
  • Kuipers L; Department of Quantum Nanoscience, Kavli Institute of Nanoscience , Delft University of Technology , Lorentzweg 1 , 2628 CJ Delft , The Netherlands.
  • Dekker C; Department of Quantum Nanoscience, Kavli Institute of Nanoscience , Delft University of Technology , Lorentzweg 1 , 2628 CJ Delft , The Netherlands.
ACS Nano ; 13(1): 61-70, 2019 01 22.
Article em En | MEDLINE | ID: mdl-30512931
ABSTRACT
Solid-state nanopores are single-molecule sensors that hold great potential for rapid protein and nucleic-acid analysis. Despite their many opportunities, the conventional ionic current detection scheme that is at the heart of the sensor suffers inherent limitations. This scheme intrinsically couples signal strength to the driving voltage, requires the use of high-concentration electrolytes, suffers from capacitive noise, and impairs high-density sensor integration. Here, we propose a fundamentally different detection scheme based on the enhanced light transmission through a plasmonic nanopore. We demonstrate that translocations of single DNA molecules can be optically detected, without the need of any labeling, in the transmitted light intensity through an inverted-bowtie plasmonic nanopore. Characterization and the cross-correlation of the optical signals with their electrical counterparts verify the plasmonic basis of the optical signal. We demonstrate DNA translocation event detection in a regime of driving voltages and buffer conditions where traditional ionic current sensing fails. This label-free optical detection scheme offers opportunities to probe native DNA-protein interactions at physiological conditions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Ressonância de Plasmônio de Superfície / Nanoporos Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Ressonância de Plasmônio de Superfície / Nanoporos Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article