Your browser doesn't support javascript.
loading
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models.
Heckmann, David; Lloyd, Colton J; Mih, Nathan; Ha, Yuanchi; Zielinski, Daniel C; Haiman, Zachary B; Desouki, Abdelmoneim Amer; Lercher, Martin J; Palsson, Bernhard O.
Afiliação
  • Heckmann D; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA. dheckmann@ucsd.edu.
  • Lloyd CJ; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
  • Mih N; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
  • Ha Y; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
  • Zielinski DC; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
  • Haiman ZB; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
  • Desouki AA; Institute for Computer Science and Department of Biology, Heinrich Heine University, 40225, Düsseldorf, Germany.
  • Lercher MJ; Institute for Computer Science and Department of Biology, Heinrich Heine University, 40225, Düsseldorf, Germany.
  • Palsson BO; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA. palsson@ucsd.edu.
Nat Commun ; 9(1): 5252, 2018 12 07.
Article em En | MEDLINE | ID: mdl-30531987
ABSTRACT
Knowing the catalytic turnover numbers of enzymes is essential for understanding the growth rate, proteome composition, and physiology of organisms, but experimental data on enzyme turnover numbers is sparse and noisy. Here, we demonstrate that machine learning can successfully predict catalytic turnover numbers in Escherichia coli based on integrated data on enzyme biochemistry, protein structure, and network context. We identify a diverse set of features that are consistently predictive for both in vivo and in vitro enzyme turnover rates, revealing novel protein structural correlates of catalytic turnover. We use our predictions to parameterize two mechanistic genome-scale modelling frameworks for proteome-limited metabolism, leading to significantly higher accuracy in the prediction of quantitative proteome data than previous approaches. The presented machine learning models thus provide a valuable tool for understanding metabolism and the proteome at the genome scale, and elucidate structural, biochemical, and network properties that underlie enzyme kinetics.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Escherichia coli / Escherichia coli / Redes e Vias Metabólicas / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Escherichia coli / Escherichia coli / Redes e Vias Metabólicas / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article