Your browser doesn't support javascript.
loading
Genetic diversity of 21 experimental chicken lines with diverse origins and genetic backgrounds.
Nunome, Mitsuo; Kinoshita, Keiji; Ishishita, Satoshi; Ohmori, Yasushige; Murai, Atsushi; Matsuda, Yoichi.
Afiliação
  • Nunome M; Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
  • Kinoshita K; Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
  • Ishishita S; Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
  • Ohmori Y; Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
  • Murai A; Laboratory of Nutrition Science, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
  • Matsuda Y; Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
Exp Anim ; 68(2): 177-193, 2019 May 08.
Article em En | MEDLINE | ID: mdl-30542001
ABSTRACT
The genetic characteristics and diversity of 21 experimental chicken lines registered with the National BioResource Project of Japan were examined using mitochondrial D-loop sequences and 54 microsatellite DNA markers. A total of 12 haplotypes were detected in the 500-bp mitochondrial DNA sequences of the hypervariable segment I for 349 individuals of 21 lines. The 12 haplotypes belonged to three (A, D, and E) haplogroups, out of the eight (A‒H) common haplogroups in domestic chickens and red junglefowls. The haplogroups A and D were widely represented in indigenous chickens in the Asian and Pacific regions, and the haplogroup E was the most prevalent in domestic chickens. Genetic clustering by discriminant analysis of principal components with microsatellite markers divided 681 individuals of 21 lines into three groups that consisted of Fayoumi-, European-, and Asian- derived lines. In each of the cladograms constructed with Nei's genetic distances based on allele frequencies and the membership coefficients provided by STRUCTURE and with the genetic distance based on the proportion of shared alleles, the genetic relationships coincided well with the breeding histories of the lines. Microsatellite markers showed remarkably lower genetic heterozygosities (less than 0.1 observed heterozygosity) for eight lines (GSP, GSN/1, YL, PNP, BM-C, WL-G, BL-E, and #413), which have been maintained as closed colonies for more than 40 years (except for #413), indicating their usefulness as experimental chicken lines in laboratory animal science research.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Variação Genética / Galinhas / Patrimônio Genético Limite: Animals País/Região como assunto: Asia Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Variação Genética / Galinhas / Patrimônio Genético Limite: Animals País/Região como assunto: Asia Idioma: En Ano de publicação: 2019 Tipo de documento: Article