Your browser doesn't support javascript.
loading
A quantitative framework for characterizing the evolutionary history of mammalian gene expression.
Chen, Jenny; Swofford, Ross; Johnson, Jeremy; Cummings, Beryl B; Rogel, Noga; Lindblad-Toh, Kerstin; Haerty, Wilfried; Palma, Federica di; Regev, Aviv.
Afiliação
  • Chen J; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
  • Swofford R; Division of Health Science and Technology, MIT, Cambridge, Massachusetts 02139, USA.
  • Johnson J; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
  • Cummings BB; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
  • Rogel N; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
  • Lindblad-Toh K; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA.
  • Haerty W; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
  • Palma FD; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
  • Regev A; Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 752 36 Uppsala, Sweden.
Genome Res ; 29(1): 53-63, 2019 01.
Article em En | MEDLINE | ID: mdl-30552105
The evolutionary history of a gene helps predict its function and relationship to phenotypic traits. Although sequence conservation is commonly used to decipher gene function and assess medical relevance, methods for functional inference from comparative expression data are lacking. Here, we use RNA-seq across seven tissues from 17 mammalian species to show that expression evolution across mammals is accurately modeled by the Ornstein-Uhlenbeck process, a commonly proposed model of continuous trait evolution. We apply this model to identify expression pathways under neutral, stabilizing, and directional selection. We further demonstrate novel applications of this model to quantify the extent of stabilizing selection on a gene's expression, parameterize the distribution of each gene's optimal expression level, and detect deleterious expression levels in expression data from individual patients. Our work provides a statistical framework for interpreting expression data across species and in disease.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Evolução Molecular / Modelos Genéticos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Evolução Molecular / Modelos Genéticos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article