Your browser doesn't support javascript.
loading
Cryo-electron microscope image denoising based on the geodesic distance.
Ouyang, Jianquan; Liang, Zezhi; Chen, Chunyu; Fu, Zhuosong; Zhang, Yue; Liu, Hongrong.
Afiliação
  • Ouyang J; Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education, College of Information Engineering, Xiangtan University, Xiangtan, 411105, China. oyjq@xtu.edu.cn.
  • Liang Z; Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education, College of Information Engineering, Xiangtan University, Xiangtan, 411105, China.
  • Chen C; Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education, College of Information Engineering, Xiangtan University, Xiangtan, 411105, China.
  • Fu Z; Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education, College of Information Engineering, Xiangtan University, Xiangtan, 411105, China.
  • Zhang Y; Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education, College of Information Engineering, Xiangtan University, Xiangtan, 411105, China.
  • Liu H; College of Physics and Information Science, Hunan Normal University, Changsha, 410081, Hunan, China.
BMC Struct Biol ; 18(1): 18, 2018 12 17.
Article em En | MEDLINE | ID: mdl-30554569
ABSTRACT

BACKGROUND:

To perform a three-dimensional (3-D) reconstruction of electron cryomicroscopy (cryo-EM) images of viruses, it is necessary to determine the similarity of image blocks of the two-dimensional (2-D) projections of the virus. The projections containing high resolution information are typically very noisy. Instead of the traditional Euler metric, this paper proposes a new method, based on the geodesic metric, to measure the similarity of blocks.

RESULTS:

Our method is a 2-D image denoising approach. A data set of 2243 cytoplasmic polyhedrosis virus (CPV) capsid particle images in different orientations was used to test the proposed method. Relative to Block-matching and three-dimensional filtering (BM3D), Stein's unbiased risk estimator (SURE), Bayes shrink and K-means singular value decomposition (K-SVD), the experimental results show that the proposed method can achieve a peak signal-to-noise ratio (PSNR) of 45.65. The method can remove the noise from the cryo-EM image and improve the accuracy of particle picking.

CONCLUSIONS:

The main contribution of the proposed model is to apply the geodesic distance to measure the similarity of image blocks. We conclude that manifold learning methods can effectively eliminate the noise of the cryo-EM image and improve the accuracy of particle picking.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microscopia Crioeletrônica Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microscopia Crioeletrônica Idioma: En Ano de publicação: 2018 Tipo de documento: Article