Your browser doesn't support javascript.
loading
Structural heterogeneity of attC integron recombination sites revealed by optical tweezers.
Mukhortava, Ann; Pöge, Matthias; Grieb, Maj Svea; Nivina, Aleksandra; Loot, Celine; Mazel, Didier; Schlierf, Michael.
Afiliação
  • Mukhortava A; B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
  • Pöge M; B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
  • Grieb MS; B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
  • Nivina A; Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, 28 Rue du Dr Roux, 75015 Paris, France.
  • Loot C; CNRS, UMR3525, 28 Rue du Dr Roux, 75015 Paris, France.
  • Mazel D; Paris Descartes University, 75006 Paris, France.
  • Schlierf M; Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, 28 Rue du Dr Roux, 75015 Paris, France.
Nucleic Acids Res ; 47(4): 1861-1870, 2019 02 28.
Article em En | MEDLINE | ID: mdl-30566629
ABSTRACT
A predominant tool for adaptation in Gram-negative bacteria is the functional genetic platform called integron. Integrons capture and rearrange promoterless gene cassettes in a unique recombination process involving the recognition of folded single-stranded DNA hairpins-so-called attC sites-with a strong preference for the attC bottom strand. While structural elements have been identified to promote this preference, their mechanistic action remains incomplete. Here, we used high-resolution single-molecule optical tweezers (OT) to characterize secondary structures formed by the attC bottom (${{att}}{{{C}}_{{\rm{bs}}}}$) and top (${{att}}{{{C}}_{{\rm{ts}}}}$) strands of the paradigmatic attCaadA7 site. We found for both sequences two structures-a straight, canonical hairpin and a kinked hairpin. Remarkably, the recombination-preferred ${{att}}{{{C}}_{{\rm{bs}}}}$ predominantly formed the straight hairpin, while the ${{att}}{{{C}}_{{\rm{ts}}}}$ preferentially adopted the kinked structure, which exposes only one complete recombinase binding box. By a mutational analysis, we identified three bases in the unpaired central spacer, which could invert the preferred conformations and increase the recombination frequency of the ${{att}}{{{C}}_{{\rm{ts}}}}$in vivo. A bioinformatics screen revealed structural bias toward a straight, canonical hairpin conformation in the bottom strand of many antibiotic resistance cassettes attC sites. Thus, we anticipate that structural fine tuning could be a mechanism in many biologically active DNA hairpins.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Recombinação Genética / DNA / Farmacorresistência Bacteriana / Integrons Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Recombinação Genética / DNA / Farmacorresistência Bacteriana / Integrons Idioma: En Ano de publicação: 2019 Tipo de documento: Article