Your browser doesn't support javascript.
loading
Two separate functions of NME3 critical for cell survival underlie a neurodegenerative disorder.
Chen, Chih-Wei; Wang, Hong-Ling; Huang, Ching-Wen; Huang, Chang-Yu; Lim, Wai Keong; Tu, I-Chen; Koorapati, Atmaja; Hsieh, Sung-Tsang; Kan, Hung-Wei; Tzeng, Shiou-Ru; Liao, Jung-Chi; Chong, Weng Man; Naroditzky, Inna; Kidron, Dvora; Eran, Ayelet; Nijim, Yousif; Sela, Ella; Feldman, Hagit Baris; Kalfon, Limor; Raveh-Barak, Hadas; Falik-Zaccai, Tzipora C; Elpeleg, Orly; Mandel, Hanna; Chang, Zee-Fen.
Afiliação
  • Chen CW; Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002 Taipei, Taiwan.
  • Wang HL; Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002 Taipei, Taiwan.
  • Huang CW; Department of Medicine, College of Medicine, National Taiwan University, 10002 Taipei, Taiwan.
  • Huang CY; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 11221 Taipei, Taiwan.
  • Lim WK; Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002 Taipei, Taiwan.
  • Tu IC; Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002 Taipei, Taiwan.
  • Koorapati A; Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002 Taipei, Taiwan.
  • Hsieh ST; Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 10002 Taipei, Taiwan.
  • Kan HW; Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 10002 Taipei, Taiwan.
  • Tzeng SR; Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, 10002 Taipei, Taiwan.
  • Liao JC; Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan.
  • Chong WM; Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan.
  • Naroditzky I; Department of Pathology, Rambam Health Care Campus, 31096 Haifa, Israel.
  • Kidron D; Department of Pathology, Meir Hospital, 44100 Kfar Saba, Israel.
  • Eran A; Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel.
  • Nijim Y; Department of Radiology, Rambam Health Care Campus, 31096 Haifa, Israel.
  • Sela E; Pediatric and Neonatal Unit, Nazareth Hospital EMMS, 17639 Nazareth, Israel.
  • Feldman HB; Pediatric and Neonatal Unit, Nazareth Hospital EMMS, 17639 Nazareth, Israel.
  • Kalfon L; The Genetics Institute, Rambam Health Care Campus, 31096 Haifa, Israel.
  • Raveh-Barak H; Institute of Human Genetics, Galilee Medical Center, 22100 Nahariya, Israel.
  • Falik-Zaccai TC; Institute of Human Genetics, Galilee Medical Center, 22100 Nahariya, Israel.
  • Elpeleg O; Institute of Human Genetics, Galilee Medical Center, 22100 Nahariya, Israel.
  • Mandel H; The Azrieli Faculty of Medicine, Bar Ilan University, 13100 Safed, Israel.
  • Chang ZF; Department of Genetic and Metabolic Diseases, Hadassah Hebrew University Medical Center, 91120 Jerusalem, Israel.
Proc Natl Acad Sci U S A ; 116(2): 566-574, 2019 01 08.
Article em En | MEDLINE | ID: mdl-30587587
ABSTRACT
We report a patient who presented with congenital hypotonia, hypoventilation, and cerebellar histopathological alterations. Exome analysis revealed a homozygous mutation in the initiation codon of the NME3 gene, which encodes an NDP kinase. The initiation-codon mutation leads to deficiency in NME3 protein expression. NME3 is a mitochondrial outer-membrane protein capable of interacting with MFN1/2, and its depletion causes dysfunction in mitochondrial dynamics. Consistently, the patient's fibroblasts were characterized by a slow rate of mitochondrial dynamics, which was reversed by expression of wild-type or catalytic-dead NME3. Moreover, glucose starvation caused mitochondrial fragmentation and cell death in the patient's cells. The expression of wild-type and catalytic-dead but not oligomerization-attenuated NME3 restored mitochondrial elongation. However, only wild-type NME3 sustained ATP production and viability. Thus, the separate functions of NME3 in mitochondrial fusion and NDP kinase cooperate in metabolic adaptation for cell survival in response to glucose starvation. Given the critical role of mitochondrial dynamics and energy requirements in neuronal development, the homozygous mutation in NME3 is linked to a fatal mitochondrial neurodegenerative disorder.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Trifosfato de Adenosina / Doenças Neurodegenerativas / Metabolismo Energético / Nucleosídeo NM23 Difosfato Quinases / Dinâmica Mitocondrial / Homozigoto Limite: Female / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Trifosfato de Adenosina / Doenças Neurodegenerativas / Metabolismo Energético / Nucleosídeo NM23 Difosfato Quinases / Dinâmica Mitocondrial / Homozigoto Limite: Female / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article