Your browser doesn't support javascript.
loading
A core-shell structured magnetic covalent organic framework (type Fe3O4@COF) as a sorbent for solid-phase extraction of endocrine-disrupting phenols prior to their quantitation by HPLC.
Deng, Ze-Hui; Wang, Xia; Wang, Xiao-Li; Gao, Cui-Ling; Dong, Liang; Wang, Ming-Lin; Zhao, Ru-Song.
Afiliação
  • Deng ZH; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
  • Wang X; College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
  • Wang XL; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
  • Gao CL; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
  • Dong L; Shandong Provincial Key Laboratory of Test Technology for Material Chemical Safety, Shandong Institute for Product Quality Inspection, Jinan, 250102, China.
  • Wang ML; National Research Center for Environmental Analysis and Measurement, Beijing, 100029, China.
  • Zhao RS; College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
Mikrochim Acta ; 186(2): 108, 2019 01 14.
Article em En | MEDLINE | ID: mdl-30637544
ABSTRACT
A magnetic covalent organic framework (Fe3O4@COF) with core-shell structure was fabricated at room temperature and used as an adsorbent for magnetic solid-phase extraction of polar endocrine-disrupting phenols (4-n-nonylphenol, 4-n-octylphenol, bisphenol A and bisphenol AF). The sorbent was characterized by transmission electron microscopy, FTIR, powder X-ray diffraction and other techniques. The main parameters governing the extraction efficiency were optimized. The phenols were quantified by HPLC with fluorometric detection. The method has attractive features such as low limits of detection (0.08-0.21 ng.mL-1), wide linear ranges (0.5-1000 ng.mL-1), and good repeatability (intra-day 0.39%-4.99%; inter-day 1.57%-5.21%). Satisfactory results were obtained when the developed method was applied to determine the four target pollutants in real world drink samples with spiked recoveries over the range of 81.3~118.0%. This indicates that the method is a powerful tool for the enrichment and determination of endocrine-disrupting phenols in drink samples. Graphical abstract A magnetite based covalent organic framework (Fe3O4@COFs) was synthesized with TPAB, TPA and Fe3O4. It was used for magnetic solid-phase extraction of endocrine-disrupting phenols from plastic-packaged tea drink samples coupled with liquid chromatography (LC) for determination.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article