Your browser doesn't support javascript.
loading
Transfer of PCBs from Microplastics under Simulated Gut Fluid Conditions Is Biphasic and Reversible.
Mohamed Nor, Nur Hazimah; Koelmans, Albert A.
Afiliação
  • Mohamed Nor NH; Aquatic Ecology and Water Quality Management Group , Wageningen University & Research , P.O. Box 47, 6700 AA Wageningen , The Netherlands.
  • Koelmans AA; Aquatic Ecology and Water Quality Management Group , Wageningen University & Research , P.O. Box 47, 6700 AA Wageningen , The Netherlands.
Environ Sci Technol ; 53(4): 1874-1883, 2019 02 19.
Article em En | MEDLINE | ID: mdl-30638363
ABSTRACT
The role of plastic as a vector for bioaccumulation of toxic chemicals is central to the risk assessment of microplastic for human health and the environment. However, transfer kinetics of sorbed contaminants from ingested microplastics are poorly understood. We develop and parametrize a chemical exchange model on microplastics in a gut fluid mimic of aquatic biota, and also included food to provide a better representation of contaminant dynamics when plastic and food are ingested, as would occur in nature. The transfer kinetics of 14 polychlorinated biphenyls (PCBs) were measured in gut fluid mimic systems under three environmentally relevant exposure scenarios of plastic ingestion by organisms, for low-density polyethylene (LDPE) and polyvinyl chloride (PVC), and were evaluated with the model. Chemical transfer was demonstrated to be biphasic and fully reversible, with fast exchange within hours followed by a slow transfer lasting for weeks to months. In clean gut systems, the bioavailability of plastic-associated PCBs for lugworms and cod ranged from 14 to 42% and 45-83% respectively. However, in contaminated gut systems, clean microplastic was capable of rapidly extracting ("cleaning") PCBs from food inside the gut, thus demonstrating that the effect of microplastic is context dependent. Therefore, chemical contamination and cleaning are likely to occur simultaneously due to the ingestion of microplastic.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Bifenilos Policlorados Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Bifenilos Policlorados Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article