Your browser doesn't support javascript.
loading
Influence of non-Markovian dynamics in equilibrium uncertainty-relations.
Pachón, Leonardo A; Triana, Johan F; Zueco, David; Brumer, Paul.
Afiliação
  • Pachón LA; Grupo de Física Teórica y Matemática Aplicada, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
  • Triana JF; Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA; Calle 70 No. 52-21, Medellín, Colombia.
  • Zueco D; Instituto de Ciencia de Materiales de Aragón y Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, Zaragoza E-50012, Spain.
  • Brumer P; Chemical Physics Theory Group, Department of Chemistry and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
J Chem Phys ; 150(3): 034105, 2019 Jan 21.
Article em En | MEDLINE | ID: mdl-30660155
ABSTRACT
Contrary to the conventional wisdom that deviations from standard thermodynamics originate from the strong coupling to the bath, it is shown that in quantum mechanics, these deviations originate from the uncertainty principle and are supported by the non-Markovian character of the dynamics. Specifically, it is shown that the lower bound of the dispersion of the total energy of the system, imposed by the uncertainty principle, is dominated by the bath power spectrum; therefore, quantum mechanics inhibits the system thermal-equilibrium-state from being described by the canonical Boltzmann's distribution. We show for a wide class of systems, systems interacting via central forces with pairwise-self-interacting environments; this general observation is in sharp contrast to the classical case, for which the thermal equilibrium distribution, irrespective of the interaction strength, is exactly characterized by the canonical Boltzmann distribution; therefore, no dependence on the bath power spectrum is present. We define an effective coupling to the environment that depends on all energy scales in the system and reservoir interaction. Sample computations in regimes predicted by this effective coupling are demonstrated. For example, for the case of strong effective coupling, deviations from standard thermodynamics are present and for the case of weak effective coupling, quantum features such as stationary entanglement are possible at high temperatures.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article