Your browser doesn't support javascript.
loading
A discriminative learning approach to differential expression analysis for single-cell RNA-seq.
Ntranos, Vasilis; Yi, Lynn; Melsted, Páll; Pachter, Lior.
Afiliação
  • Ntranos V; Department of Electrical Engineering & Computer Science, UC Berkeley, Berkeley, CA, USA.
  • Yi L; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
  • Melsted P; UCLA-Caltech Medical Science Training Program, UCLA, Los Angeles, CA, USA.
  • Pachter L; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Nat Methods ; 16(2): 163-166, 2019 02.
Article em En | MEDLINE | ID: mdl-30664774
Single-cell RNA-seq makes it possible to characterize the transcriptomes of cell types across different conditions and to identify their transcriptional signatures via differential analysis. Our method detects changes in transcript dynamics and in overall gene abundance in large numbers of cells to determine differential expression. When applied to transcript compatibility counts obtained via pseudoalignment, our approach provides a quantification-free analysis of 3' single-cell RNA-seq that can identify previously undetectable marker genes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Sequência de RNA / Análise de Célula Única Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Sequência de RNA / Análise de Célula Única Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article