Your browser doesn't support javascript.
loading
LDJump: Estimating variable recombination rates from population genetic data.
Hermann, Philipp; Heissl, Angelika; Tiemann-Boege, Irene; Futschik, Andreas.
Afiliação
  • Hermann P; Department of Applied Statistics, Johannes Kepler University Linz, Linz, Austria.
  • Heissl A; Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
  • Tiemann-Boege I; Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
  • Futschik A; Department of Applied Statistics, Johannes Kepler University Linz, Linz, Austria.
Mol Ecol Resour ; 19(3): 623-638, 2019 May.
Article em En | MEDLINE | ID: mdl-30666785
As recombination plays an important role in evolution, its estimation and the identification of hotspot positions is of considerable interest. We propose a novel approach for estimating population recombination rates based on genotyping or sequence data that involves a sequential multiscale change point estimator. Our method also permits demography to be taken into account. It uses several summary statistics within a regression model fitted on suitable scenarios. Our proposed method is accurate, computationally fast, and provides a parsimonious solution by ensuring a type I error control against too many changes in the recombination rate. An application to human genome data suggests a good congruence between our estimated and experimentally identified hotspots. Our method is implemented in the R-package LDJump, which is freely available at https://github.com/PhHermann/LDJump.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Recombinação Genética / Biologia Computacional / Genética Populacional Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Recombinação Genética / Biologia Computacional / Genética Populacional Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article