Your browser doesn't support javascript.
loading
Machine learning coarse grained models for water.
Chan, Henry; Cherukara, Mathew J; Narayanan, Badri; Loeffler, Troy D; Benmore, Chris; Gray, Stephen K; Sankaranarayanan, Subramanian K R S.
Afiliação
  • Chan H; Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA. hchan@anl.gov.
  • Cherukara MJ; Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA.
  • Narayanan B; Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA.
  • Loeffler TD; Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40292, USA.
  • Benmore C; Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA.
  • Gray SK; X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
  • Sankaranarayanan SKRS; Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA.
Nat Commun ; 10(1): 379, 2019 01 22.
Article em En | MEDLINE | ID: mdl-30670699
ABSTRACT
An accurate and computationally efficient molecular level description of mesoscopic behavior of ice-water systems remains a major challenge. Here, we introduce a set of machine-learned coarse-grained (CG) models (ML-BOP, ML-BOPdih, and ML-mW) that accurately describe the structure and thermodynamic anomalies of both water and ice at mesoscopic scales, all at two orders of magnitude cheaper computational cost than existing atomistic models. In a significant departure from conventional force-field fitting, we use a multilevel evolutionary strategy that trains CG models against not just energetics from first-principles and experiments but also temperature-dependent properties inferred from on-the-fly molecular dynamics (~ 10's of milliseconds of overall trajectories). Our ML BOP models predict both the correct experimental melting point of ice and the temperature of maximum density of liquid water that remained elusive to-date. Our ML workflow navigates efficiently through the high-dimensional parameter space to even improve upon existing high-quality CG models (e.g. mW model).

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article