Your browser doesn't support javascript.
loading
Antibiotic treatment triggers gut dysbiosis and modulates metabolism in a chicken model of gastro-intestinal infection.
Le Roy, Caroline Ivanne; Woodward, Martin John; Ellis, Richard John; La Ragione, Roberto Marcello; Claus, Sandrine Paule.
Afiliação
  • Le Roy CI; Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK. caroline.le_roy@kcl.ac.uk.
  • Woodward MJ; Present Address: Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK. caroline.le_roy@kcl.ac.uk.
  • Ellis RJ; Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK.
  • La Ragione RM; Central Sequencing Unit, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK.
  • Claus SP; Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, Surrey, GU2 7AL, UK.
BMC Vet Res ; 15(1): 37, 2019 Jan 25.
Article em En | MEDLINE | ID: mdl-30683093
ABSTRACT

BACKGROUND:

Infection of the digestive track by gastro-intestinal pathogens results in the development of symptoms ranging from mild diarrhea to more severe clinical signs such as dysentery, severe dehydration and potentially death. Although, antibiotics are efficient to tackle infections, they also trigger dysbiosis that has been suggested to result in variation in weight gain in animal production systems.

RESULTS:

Here is the first study demonstrating the metabolic impact of infection by a gastro-intestinal pathogen (Brachyspira pilosicoli) and its resolution by antibiotic treatment (tiamulin) on the host (chicken) systemic metabolism and gut microbiota composition using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy and 16S rDNA next generation sequencing (NGS). Clear systemic metabolic markers of infections such as glycerol and betaine were identified. Weight loss in untreated animals was in part explained by the observation of a modification of systemic host energy metabolism characterized by the utilization of glycerol as a glucose precursor. However, antibiotic treatment triggered an increased VLDL/HDL ratio in plasma that may contribute to reducing weight loss observed in treated birds. All metabolic responses co-occurred with significant shift of the microbiota upon infection or antibiotic treatment.

CONCLUSION:

This study indicates that infection and antibiotic treatment trigger dysbiosis that may impact host systemic energy metabolism and cause phenotypic and health modifications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções por Bactérias Gram-Negativas / Disbiose / Microbioma Gastrointestinal / Gastroenteropatias Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções por Bactérias Gram-Negativas / Disbiose / Microbioma Gastrointestinal / Gastroenteropatias Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article