Your browser doesn't support javascript.
loading
Transient receptor potential vanilloid 4 channels are important regulators of parenchymal arteriole dilation and cognitive function.
Diaz-Otero, Janice M; Yen, Ting-Chieh; Ahmad, Amna; Laimon-Thomson, Erinn; Abolibdeh, Bana; Kelly, Kara; Lewis, Matthew T; Wiseman, Robert W; Jackson, William F; Dorrance, Anne M.
Afiliação
  • Diaz-Otero JM; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
  • Yen TC; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
  • Ahmad A; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
  • Laimon-Thomson E; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
  • Abolibdeh B; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
  • Kelly K; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
  • Lewis MT; Department of Physiology, Michigan State University, East Lansing, Michigan.
  • Wiseman RW; Department of Physiology, Michigan State University, East Lansing, Michigan.
  • Jackson WF; Department of Radiology, Michigan State University, East Lansing, Michigan.
  • Dorrance AM; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
Microcirculation ; 26(6): e12535, 2019 08.
Article em En | MEDLINE | ID: mdl-30721555
ABSTRACT

OBJECTIVE:

Hypertension-associated PA dysfunction reduces cerebral perfusion and impairs cognition. This is associated with impaired TRPV4-mediated PA dilation; therefore, we tested the hypothesis that TRPV4 channels are important regulators of cerebral perfusion, PA structure and dilation, and cognition.

METHODS:

Ten- to twelve-month-old male TRPV4 knockout (WKY-Trpv4em4Mcwi ) and age-matched control WKY rats were studied. Cerebral perfusion was measured by MRI with arterial spin labeling. PA structure and function were assessed using pressure myography and cognitive function using the novel object recognition test.

RESULTS:

Cerebral perfusion was reduced in the WKY-Trpv4em4Mcwi rats. This was not a result of PA remodeling because TRPV4 deletion did not change PA structure. TRPV4 deletion did not change PA myogenic tone development, but PAs from the WKY-Trpv4em4Mcwi rats had severely blunted endothelium-dependent dilation. The WKY-Trpv4em4Mcwi rats had impaired cognitive function and exhibited depressive-like behavior. The WKY-Trpv4em4Mcwi rats also had increased microglia activation, and increased mRNA expression of GFAP and tumor necrosis factor alpha suggesting increased inflammation.

CONCLUSION:

Our data indicate that TRPV4 channels play a critical role in cerebral perfusion, PA dilation, cognition, and inflammation. Impaired TRPV4 function in diseases such as hypertension may increase the risk of the development of vascular dementia.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Artérias Cerebrais / Circulação Cerebrovascular / Cognição / Canais de Cátion TRPV / Hipertensão Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Artérias Cerebrais / Circulação Cerebrovascular / Cognição / Canais de Cátion TRPV / Hipertensão Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article