Your browser doesn't support javascript.
loading
Functional genomics of epilepsy-associated mutations in the GABAA receptor subunits reveal that one mutation impairs function and two are catastrophic.
Absalom, Nathan L; Ahring, Philip K; Liao, Vivian W; Balle, Thomas; Jiang, Tian; Anderson, Lyndsey L; Arnold, Jonathon C; McGregor, Iain S; Bowen, Michael T; Chebib, Mary.
Afiliação
  • Absalom NL; From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia.
  • Ahring PK; From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia.
  • Liao VW; From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia.
  • Balle T; From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia.
  • Jiang T; From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia.
  • Anderson LL; From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia; Lambert Initiative for Cannabinoid Therapeutics, Univer
  • Arnold JC; From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia; Lambert Initiative for Cannabinoid Therapeutics, Univer
  • McGregor IS; From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; the School of Psychology, Faculty of Science, U
  • Bowen MT; From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; the School of Psychology, Faculty of Science, U
  • Chebib M; From the Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales 2050, Australia; School of Pharmacy, University of Sydney, Camperdown, New South Wales 2006, Australia. Electronic address: mary.collins@sydney.edu.au.
J Biol Chem ; 294(15): 6157-6171, 2019 04 12.
Article em En | MEDLINE | ID: mdl-30728247
ABSTRACT
A number of epilepsy-causing mutations have recently been identified in the genes of the α1, ß3, and γ2 subunits comprising the γ-aminobutyric acid type A (GABAA) receptor. These mutations are typically dominant, and in certain cases, such as the α1 and ß3 subunits, they may lead to a mix of receptors at the cell surface that contain no mutant subunits, a single mutated subunit, or two mutated subunits. To determine the effects of mutations in a single subunit or in two subunits on receptor activation, we created a concatenated protein assembly that links all five subunits of the α1ß3γ2 receptor and expresses them in the correct orientation. We created nine separate receptor variants with a single-mutant subunit and four receptors containing two subunits of the γ2R323Q, ß3D120N, ß3T157M, ß3Y302C, and ß3S254F epilepsy-causing mutations. We found that the singly mutated γ2R323Q subunit impairs GABA activation of the receptor by reducing GABA potency. A single ß3D120N, ß3T157M, or ß3Y302C mutation also substantially impaired receptor activation, and two copies of these mutants within a receptor were catastrophic. Of note, an effect of the ß3S254F mutation on GABA potency depended on the location of this mutant subunit within the receptor, possibly because of the membrane environment surrounding the transmembrane region of the receptor. Our results highlight that precise functional genomic analyses of GABAA receptor mutations using concatenated constructs can identify receptors with an intermediate phenotype that contribute to epileptic phenotypes and that are potential drug targets for precision medicine approaches.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membrana Celular / Receptores de GABA-A / Mutação de Sentido Incorreto / Subunidades Proteicas / Epilepsia / Ácido gama-Aminobutírico Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membrana Celular / Receptores de GABA-A / Mutação de Sentido Incorreto / Subunidades Proteicas / Epilepsia / Ácido gama-Aminobutírico Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article