Your browser doesn't support javascript.
loading
Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development.
Pawlak, Michal; Kedzierska, Katarzyna Z; Migdal, Maciej; Karim, Abu Nahia; Ramilowski, Jordan A; Bugajski, Lukasz; Hashimoto, Kosuke; Marconi, Aleksandra; Piwocka, Katarzyna; Carninci, Piero; Winata, Cecilia L.
Afiliação
  • Pawlak M; International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland.
  • Kedzierska KZ; International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland.
  • Migdal M; International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland.
  • Karim AN; International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland.
  • Ramilowski JA; RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan.
  • Bugajski L; Nencki Institute of Experimental Biology, Laboratory of Cytometry, 02-093 Warsaw, Poland.
  • Hashimoto K; RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan.
  • Marconi A; International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland.
  • Piwocka K; Nencki Institute of Experimental Biology, Laboratory of Cytometry, 02-093 Warsaw, Poland.
  • Carninci P; RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan.
  • Winata CL; International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland.
Genome Res ; 29(3): 506-519, 2019 03.
Article em En | MEDLINE | ID: mdl-30760547
Organogenesis involves dynamic regulation of gene transcription and complex multipathway interactions. Despite our knowledge of key factors regulating various steps of heart morphogenesis, considerable challenges in understanding its mechanism still exist because little is known about their downstream targets and interactive regulatory network. To better understand transcriptional regulatory mechanism driving heart development and the consequences of its disruption in vivo, we performed time-series analyses of the transcriptome and genome-wide chromatin accessibility in isolated cardiomyocytes (CMs) from wild-type zebrafish embryos at developmental stages corresponding to heart tube morphogenesis, looping, and maturation. We identified genetic regulatory modules driving crucial events of heart development that contained key cardiac TFs and are associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of the corresponding TFs. Loss of function of cardiac TFs Gata5, Tbx5a, and Hand2 affected the cardiac regulatory networks and caused global changes in chromatin accessibility profile, indicating their role in heart development. Among regions with differential chromatin accessibility in mutants were highly conserved noncoding elements that represent putative enhancers driving heart development. The most prominent gene expression changes, which correlated with chromatin accessibility modifications within their proximal promoter regions, occurred between heart tube morphogenesis and looping, and were associated with metabolic shift and hematopoietic/cardiac fate switch during CM maturation. Our results revealed the dynamic regulatory landscape throughout heart development and identified interactive molecular networks driving key events of heart morphogenesis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica no Desenvolvimento / Miócitos Cardíacos / Montagem e Desmontagem da Cromatina / Transcriptoma / Coração Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica no Desenvolvimento / Miócitos Cardíacos / Montagem e Desmontagem da Cromatina / Transcriptoma / Coração Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article