Your browser doesn't support javascript.
loading
High-Sensitivity Microwave Sensor for Liquid Characterization Using a Complementary Circular Spiral Resonator.
Zhang, Xingyun; Ruan, Cunjun; Haq, Tanveer Ul; Chen, Kanglong.
Afiliação
  • Zhang X; School of Electronic and Information Engineering, Beihang University, Beijing 100191, China. luckyzhang@buaa.edu.cn.
  • Ruan C; School of Electronic and Information Engineering, Beihang University, Beijing 100191, China. ruancunjun@buaa.edu.cn.
  • Haq TU; Beijing Key Laboratory for Microwave Sensing and Security Applications, Beihang University, Beijing 100191, China. ruancunjun@buaa.edu.cn.
  • Chen K; School of Electronic and Information Engineering, Beihang University, Beijing 100191, China. tanveerulhaq@buaa.edu.cn.
Sensors (Basel) ; 19(4)2019 Feb 15.
Article em En | MEDLINE | ID: mdl-30769942
ABSTRACT
This paper describes a low-cost, small size, and high-sensitivity microwave sensor using a Complementary Circular Spiral Resonator (CCSR), which operates at around 2.4 GHz, for identifying liquid samples and determining their dielectric constants. The proposed sensor was fabricated and tested to effectively identify different liquids commonly used in daily life and determine the concentrations of various ethanol⁻water mixtures at by measuring the resonant frequency of the CCSR. Using acrylic paint, a square channel was drawn at the most sensitive position of the microwave sensor to ensure accuracy of the experiment. To estimate the dielectric constants of the liquids under test, an approximate model was established using a High-Frequency Simulator Structure (HFSS). The results obtained agree very well with the existing data. Two parabolic equations were calculated and fitted to identify unknown liquids and determine the concentrations of ethanol⁻water mixtures. Thus, our microwave sensor provides a method with high sensitivity and low consumption of material for liquid monitoring and determination, which proves the feasibility and broad prospect of this low-cost system in industrial application.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article