An analytical approach for the simulation of realistic low-dose fluoroscopic images.
Int J Comput Assist Radiol Surg
; 14(4): 601-610, 2019 Apr.
Article
em En
| MEDLINE
| ID: mdl-30779022
PURPOSE: The quality of X-ray images plays an important role in computer-assisted interventions. Although learning-based denoising techniques have been shown to be successful in improving the image quality, they often rely on pairs of associated low- and high-dose X-ray images that are usually not possible to acquire at different dose levels in a clinical scenario. Moreover, since data variation is an important requirement for learning-based methods, the use of phantom data alone may not be sufficient. A possibility to address this issue is a realistic simulation of low-dose images from their related high-dose counterparts. METHOD: We introduce a novel noise simulation method based on an X-ray image formation model. The method makes use of the system parameters associated with low- and high-dose X-ray image acquisitions, such as system gain and electronic noise, to preserve the image noise characteristics of low-dose images. RESULTS: We have compared several corresponding regions of the associated real and simulated low-dose images-obtained from two different imaging systems-visually as well as statistically, using a two-sample Kolmogorov-Smirnov test at 5% significance. In addition to being visually similar, the hypothesis that the corresponding regions-from 80 pairs of real and simulated low-dose regions-belonging to the same distribution has been accepted in 81.43% of the cases. CONCLUSION: The results suggest that the simulated low-dose images obtained using the proposed method are almost indistinguishable from real low-dose images. Since extensive calibration procedures required in previous methods can be avoided using the proposed approach, it allows an easy adaptation to different X-ray imaging systems. This in turn leads to an increased diversity of the training data for potential learning-based methods.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Simulação por Computador
/
Fluoroscopia
/
Imagens de Fantasmas
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article