Your browser doesn't support javascript.
loading
Applying Heteroatom Substitution in Organic Photovoltaics.
Manion, Joseph G; Panchuk, Jenny R; Seferos, Dwight S.
Afiliação
  • Manion JG; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, CAN M5S 3H6.
  • Panchuk JR; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, CAN M5S 3H6.
  • Seferos DS; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, CAN M5S 3H6.
Chem Rec ; 19(6): 1113-1122, 2019 Jun.
Article em En | MEDLINE | ID: mdl-30793821
ABSTRACT
Poly(3-alkylthiophene) (P3AT) has been a central focus of research on organic photovoltaics (OPVs) for well over a decade. Due to their controlled synthesis P3ATs have proven to be a vital model system for developing an understanding of the effects of polymer structure on optoelectronic properties and blend morphology in bulk heterojunction OPVs. Similar to their thiophene counterparts, selenophene and tellurophene can be polymerized in a controlled manner. As single atom substitution results in significant differences in absorption, charge transport and self-assembly these model systems provide a unique opportunity to probe fundamental structure-property relationships. In this account, we provide an overview of our work on copolymers of thiophene and selenophene and examine how the optoelectronic and morphological behavior of these materials can be strategically adjusted through polymer design. We also highlight recent developments on poly(3-alkyltellurophene) and comment on its future in fundamental and applied studies.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article