Your browser doesn't support javascript.
loading
Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naïve proliferative diabetic retinopathy.
Nagasawa, Toshihiko; Tabuchi, Hitoshi; Masumoto, Hiroki; Enno, Hiroki; Niki, Masanori; Ohara, Zaigen; Yoshizumi, Yuki; Ohsugi, Hideharu; Mitamura, Yoshinori.
Afiliação
  • Nagasawa T; Department of Ophthalmology, Saneikai Tsukazaki Hospital, 68-1 Aboshi Waku, Himeji City, Hyogo Prefecture, 671-1227, Japan. t.nagasawa@tsukazaki-eye.net.
  • Tabuchi H; Department of Ophthalmology, Saneikai Tsukazaki Hospital, 68-1 Aboshi Waku, Himeji City, Hyogo Prefecture, 671-1227, Japan.
  • Masumoto H; Department of Ophthalmology, Saneikai Tsukazaki Hospital, 68-1 Aboshi Waku, Himeji City, Hyogo Prefecture, 671-1227, Japan.
  • Enno H; Rist Inc., Tokyo, Japan.
  • Niki M; Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
  • Ohara Z; Department of Ophthalmology, Saneikai Tsukazaki Hospital, 68-1 Aboshi Waku, Himeji City, Hyogo Prefecture, 671-1227, Japan.
  • Yoshizumi Y; Department of Ophthalmology, Saneikai Tsukazaki Hospital, 68-1 Aboshi Waku, Himeji City, Hyogo Prefecture, 671-1227, Japan.
  • Ohsugi H; Department of Ophthalmology, Saneikai Tsukazaki Hospital, 68-1 Aboshi Waku, Himeji City, Hyogo Prefecture, 671-1227, Japan.
  • Mitamura Y; Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
Int Ophthalmol ; 39(10): 2153-2159, 2019 Oct.
Article em En | MEDLINE | ID: mdl-30798455
PURPOSE: We investigated using ultrawide-field fundus images with a deep convolutional neural network (DCNN), which is a machine learning technology, to detect treatment-naïve proliferative diabetic retinopathy (PDR). METHODS: We conducted training with the DCNN using 378 photographic images (132 PDR and 246 non-PDR) and constructed a deep learning model. The area under the curve (AUC), sensitivity, and specificity were examined. RESULT: The constructed deep learning model demonstrated a high sensitivity of 94.7% and a high specificity of 97.2%, with an AUC of 0.969. CONCLUSION: Our findings suggested that PDR could be diagnosed using wide-angle camera images and deep learning.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oftalmoscopia / Diagnóstico por Computador / Retinopatia Diabética / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oftalmoscopia / Diagnóstico por Computador / Retinopatia Diabética / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article