Your browser doesn't support javascript.
loading
Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation.
Peterson, Eliza Jr; Bailo, Rebeca; Rothchild, Alissa C; Arrieta-Ortiz, Mario L; Kaur, Amardeep; Pan, Min; Mai, Dat; Abidi, Abrar A; Cooper, Charlotte; Aderem, Alan; Bhatt, Apoorva; Baliga, Nitin S.
Afiliação
  • Peterson EJ; Institute for Systems Biology, Seattle, WA, USA.
  • Bailo R; School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
  • Rothchild AC; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
  • Arrieta-Ortiz ML; Institute for Systems Biology, Seattle, WA, USA.
  • Kaur A; Institute for Systems Biology, Seattle, WA, USA.
  • Pan M; Institute for Systems Biology, Seattle, WA, USA.
  • Mai D; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
  • Abidi AA; Institute for Systems Biology, Seattle, WA, USA.
  • Cooper C; School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
  • Aderem A; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
  • Bhatt A; School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK a.bhatt@bham.ac.uk nitin.baliga@systemsbiology.org.
  • Baliga NS; Institute for Systems Biology, Seattle, WA, USA a.bhatt@bham.ac.uk nitin.baliga@systemsbiology.org.
Mol Syst Biol ; 15(3): e8584, 2019 03 04.
Article em En | MEDLINE | ID: mdl-30833303
ABSTRACT
The success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA Using Path-seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Tuberculose / Redes Reguladoras de Genes / Interações Hospedeiro-Patógeno / Macrófagos / Mycobacterium tuberculosis / Antígenos de Bactérias Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Tuberculose / Redes Reguladoras de Genes / Interações Hospedeiro-Patógeno / Macrófagos / Mycobacterium tuberculosis / Antígenos de Bactérias Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article