Your browser doesn't support javascript.
loading
Reduction in MnSOD promotes the migration and invasion of squamous carcinoma cells.
Fan, Jhen-Jia; Hsu, Wen-Hsien; Hung, Hao-Hsiang; Zhang, Wei-Jun; Lee, Yu-Lin A; Chen, Ku-Chung; Chu, Cheng-Ying; Ko, Tzu-Ping; Lee, Ming-Ting; Lin, Cheng-Wei; Cheng, Chia-Hsiung.
Afiliação
  • Fan JJ; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan, R.O.C.
  • Hsu WH; Department of Surgery, Wan­Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
  • Hung HH; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan, R.O.C.
  • Zhang WJ; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan, R.O.C.
  • Lee YA; Departments of Medicine and Pediatrics, Hospice and Palliative Medicine, Duke University Hospital, Durham, NC 27710, USA.
  • Chen KC; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
  • Chu CY; Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
  • Ko TP; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, R.O.C.
  • Lee MT; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan, R.O.C.
  • Lin CW; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
  • Cheng CH; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
Int J Oncol ; 54(5): 1639-1650, 2019 May.
Article em En | MEDLINE | ID: mdl-30896828
ABSTRACT
Reactive oxygen species (ROS) homeostasis is maintained at a higher level in cancer cells, which promotes tumorigenesis. Oxidative stress induced by anticancer drugs may further increase ROS to promote apoptosis, but can also enhance the metastasis of cancer cells. The effects of ROS homeostasis on cancer cells remain to be fully elucidated. In the present study, the effect of a reduction in manganese superoxide dismutase (MnSOD) on the migration and invasion of A431 cells was investigated. Our previous micro­assay data revealed that the mRNA expression of MnSOD was higher in the invasive A431­III cell line compared with that in the parental A431 cell line (A431­P). In the present study, high protein levels of MnSOD and H2O2 production were observed in A431­III cells; however, catalase protein levels were significantly lower in A431­III cells compared with those in the A431­P cell line. The knockdown of MnSOD increased H2O2 levels, enzyme activity, the mRNA levels of matrix metalloproteinase­1, ­2 and ­9, and the migratory and invasive abilities of the cells. Inducing a reduction in H2O2 using diphenyleneiodonium (DPI) and N­acetyl­l­cysteine decreased the migratory abilities of the cell lines, and DPI attenuated the migratory ability that had been increased by MnSOD small interfering RNA knockdown. Luteolin (Lu) and quercetin (Qu) increased the expression of catalase and reduced H2O2 levels, but without an observed change in the protein levels of MnSOD. Taken together, these data suggest that reduced MnSOD may induce ROS imbalance in cells and promote the metastatic ability of cancer cells. Lu and Qu may attenuate these processes and may be promising potential anticancer agents.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Superóxido Dismutase / Carcinoma de Células Escamosas / Regulação para Baixo / Espécies Reativas de Oxigênio Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Superóxido Dismutase / Carcinoma de Células Escamosas / Regulação para Baixo / Espécies Reativas de Oxigênio Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article