Your browser doesn't support javascript.
loading
Disentangling motor planning and motor execution in unmedicated de novo Parkinson's disease patients: An fMRI study.
Martin, Jason A; Zimmermann, Nadine; Scheef, Lukas; Jankowski, Jakob; Paus, Sebastian; Schild, Hans H; Klockgether, Thomas; Boecker, Henning.
Afiliação
  • Martin JA; Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany. Electronic address: Jason.Martin@ukb.uni-bo
  • Zimmermann N; Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
  • Scheef L; Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
  • Jankowski J; Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
  • Paus S; Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
  • Schild HH; Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
  • Klockgether T; Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
  • Boecker H; Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
Neuroimage Clin ; 22: 101784, 2019.
Article em En | MEDLINE | ID: mdl-30925383
ABSTRACT
Many studies have used functional magnetic resonance imaging to unravel the neuronal underpinnings of motor system abnormalities in Parkinson's disease, indicating functional inhibition at the level of basal ganglia-thalamo-cortical motor networks. The study aim was to extend the characterization of functional motor changes in Parkinson's Disease by dissociating between two phases of action (i.e. motor planning and motor execution) during an automated unilateral finger movement sequence with the left and right hand, separately. In essence, we wished to identify neuronal dysfunction and potential neuronal compensation before (planning) and during (execution) automated sequential motor behavior in unmedicated early stage Parkinson's Disease patients. Twenty-two Parkinson's Disease patients (14 males; 53 ±â€¯11 years; Hoehn and Yahr score 1.4 ±â€¯0.6; UPDRS (part 3) motor score 16 ±â€¯6) and 22 healthy controls (14 males; 49 ±â€¯12 years) performed a pre-learnt four finger sequence (index, ring, middle and little finger, in order), either self-initiated (FREE) or externally triggered (REACT), within an 8-second time window. Findings were most pronounced during FREE with the clinically most affected side, where motor execution revealed significant underactivity of contralateral primary motor cortex, contralateral posterior putamen (sensorimotor territory), ipsilateral anterior cerebellum / cerebellar vermis, along with underactivity in supplementary motor area (based on ROI analyses only), corroborating previous findings in Parkinson's Disease. During motor planning, Parkinson's Disease patients showed a significant relative overactivity in dorsolateral prefrontal cortex (DLPFC), suggesting a compensatory overactivity. To a variable extent this relative overactivity in the DLPFC went along with a relative overactivity in the precuneus and the ipsilateral anterior cerebellum/cerebellar vermis Our study illustrates that a refined view of disturbances in motor function and compensatory processes can be gained from experimental designs that try to dissociate motor planning from motor execution, emphasizing that compensatory mechanisms are triggered in Parkinson's Disease when voluntary movements are conceptualized for action.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Putamen / Cerebelo / Córtex Pré-Frontal / Neuroimagem Funcional / Atividade Motora / Córtex Motor / Rede Nervosa Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Putamen / Cerebelo / Córtex Pré-Frontal / Neuroimagem Funcional / Atividade Motora / Córtex Motor / Rede Nervosa Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article