Your browser doesn't support javascript.
loading
CuS Nanoparticles as a Photodynamic Nanoswitch for Abrogating Bypass Signaling To Overcome Gefitinib Resistance.
Gu, Xiajing; Qiu, Yuanyuan; Lin, Miao; Cui, Kai; Chen, Gaoxian; Chen, Yingzhi; Fan, Chenchen; Zhang, Yongming; Xu, Lu; Chen, Hongzhuan; Wan, Jian-Bo; Lu, Wei; Xiao, Zeyu.
Afiliação
  • Gu X; Department of Nuclear Medicine, Clinical and Fundamental Research Center, Institute of Molecular Medicine, Ren Ji Hospital, and Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center , Shanghai Jiao Tong University School of Medicine , Shanghai 200025
  • Qiu Y; Department of Nuclear Medicine, Clinical and Fundamental Research Center, Institute of Molecular Medicine, Ren Ji Hospital, and Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center , Shanghai Jiao Tong University School of Medicine , Shanghai 200025
  • Lin M; Department of Nuclear Medicine, Clinical and Fundamental Research Center, Institute of Molecular Medicine, Ren Ji Hospital, and Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center , Shanghai Jiao Tong University School of Medicine , Shanghai 200025
  • Cui K; Department of Nuclear Medicine, Clinical and Fundamental Research Center, Institute of Molecular Medicine, Ren Ji Hospital, and Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center , Shanghai Jiao Tong University School of Medicine , Shanghai 200025
  • Chen G; Department of Nuclear Medicine, Clinical and Fundamental Research Center, Institute of Molecular Medicine, Ren Ji Hospital, and Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center , Shanghai Jiao Tong University School of Medicine , Shanghai 200025
  • Chen Y; Department of Nuclear Medicine, Clinical and Fundamental Research Center, Institute of Molecular Medicine, Ren Ji Hospital, and Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center , Shanghai Jiao Tong University School of Medicine , Shanghai 200025
  • Fan C; Department of Nuclear Medicine, Clinical and Fundamental Research Center, Institute of Molecular Medicine, Ren Ji Hospital, and Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center , Shanghai Jiao Tong University School of Medicine , Shanghai 200025
  • Zhang Y; Department of Nuclear Medicine, Clinical and Fundamental Research Center, Institute of Molecular Medicine, Ren Ji Hospital, and Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center , Shanghai Jiao Tong University School of Medicine , Shanghai 200025
  • Xu L; Department of Nuclear Medicine, Clinical and Fundamental Research Center, Institute of Molecular Medicine, Ren Ji Hospital, and Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center , Shanghai Jiao Tong University School of Medicine , Shanghai 200025
  • Chen H; Institute of Interdisciplinary Integrative Biomedical Research , Shanghai University of Traditional Chinese Medicine , Shanghai 201210 , China.
  • Wan JB; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Taipa, Macao 999078 , China.
  • Lu W; Key Laboratory of Smart Drug Delivery, Ministry of Education, and State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy , Fudan University , Shanghai 201203 , China.
  • Xiao Z; Department of Nuclear Medicine, Clinical and Fundamental Research Center, Institute of Molecular Medicine, Ren Ji Hospital, and Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center , Shanghai Jiao Tong University School of Medicine , Shanghai 200025
Nano Lett ; 19(5): 3344-3352, 2019 05 08.
Article em En | MEDLINE | ID: mdl-30974946
ABSTRACT
Bypass signaling activation plays a crucial role in the acquired resistance of gefitinib, the first targeted drug in the clinic to treat advanced non-small cell lung cancer. Although the inactivation of bypass signaling by small-molecule inhibitors or monoclonal antibodies may overcome gefitinib resistance, their clinical use has been limited by the complex production process and off-target toxicity. Here we show CuS nanoparticles (NPs) behaved as a photodynamic nanoswitch to specifically abrogate overactive bypass signaling in resistant tumor cells without interfering with the same signal pathways in normal cells. In representative insulin growth factor-1 receptor (IGF1R) bypass activation-induced gefitinib resistant tumors, CuS NPs upon near-infrared laser irradiation locally elevated reactive oxygen species (ROS) level in tumor cells, leading to the blockage of bypass IGF1R and its downstream AKT/ERK/NF-κB signaling cascades. Consequently, laser-irradiated CuS NPs sensitized tumors to gefitinib treatment and prolonged the survival of mice with no obvious toxicity. Laser-irradiated CuS NPs may serve as a simple and safe nanomedicine strategy to overcome bypass activation-induced gefitinib resistance in a specific and controllable manner and provide insights into the treatment of a myriad of other resistant tumors in the field of cancer therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Pulmonar de Células não Pequenas / Resistencia a Medicamentos Antineoplásicos / Nanopartículas / Antineoplásicos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Pulmonar de Células não Pequenas / Resistencia a Medicamentos Antineoplásicos / Nanopartículas / Antineoplásicos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article