Your browser doesn't support javascript.
loading
Self-Organized Nuclear Positioning Synchronizes the Cell Cycle in Drosophila Embryos.
Deneke, Victoria E; Puliafito, Alberto; Krueger, Daniel; Narla, Avaneesh V; De Simone, Alessandro; Primo, Luca; Vergassola, Massimo; De Renzis, Stefano; Di Talia, Stefano.
Afiliação
  • Deneke VE; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
  • Puliafito A; Candiolo Cancer Institute FPO-IRCCS, Laboratory of Cell Migration, Candiolo Torino 10060, Italy; Department of Oncology, Università di Torino, Torino 10060, Italy.
  • Krueger D; EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
  • Narla AV; Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
  • De Simone A; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
  • Primo L; Candiolo Cancer Institute FPO-IRCCS, Laboratory of Cell Migration, Candiolo Torino 10060, Italy; Department of Oncology, Università di Torino, Torino 10060, Italy.
  • Vergassola M; Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
  • De Renzis S; EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
  • Di Talia S; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA. Electronic address: stefano.ditalia@duke.edu.
Cell ; 177(4): 925-941.e17, 2019 05 02.
Article em En | MEDLINE | ID: mdl-30982601
ABSTRACT
The synchronous cleavage divisions of early embryogenesis require coordination of the cell-cycle oscillator, the dynamics of the cytoskeleton, and the cytoplasm. Yet, it remains unclear how spatially restricted biochemical signals are integrated with physical properties of the embryo to generate collective dynamics. Here, we show that synchronization of the cell cycle in Drosophila embryos requires accurate nuclear positioning, which is regulated by the cell-cycle oscillator through cortical contractility and cytoplasmic flows. We demonstrate that biochemical oscillations are initiated by local Cdk1 inactivation and spread through the activity of phosphatase PP1 to generate cortical myosin II gradients. These gradients cause cortical and cytoplasmic flows that control proper nuclear positioning. Perturbations of PP1 activity and optogenetic manipulations of cortical actomyosin disrupt nuclear spreading, resulting in loss of cell-cycle synchrony. We conclude that mitotic synchrony is established by a self-organized mechanism that integrates the cell-cycle oscillator and embryo mechanics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ciclo Celular / Proteína Quinase CDC2 / Proteínas de Drosophila / Divisão do Núcleo Celular Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ciclo Celular / Proteína Quinase CDC2 / Proteínas de Drosophila / Divisão do Núcleo Celular Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article