Your browser doesn't support javascript.
loading
Lipid nanoparticles for delivery of messenger RNA to the back of the eye.
Patel, Siddharth; Ryals, Renee C; Weller, Kyle K; Pennesi, Mark E; Sahay, Gaurav.
Afiliação
  • Patel S; Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA.
  • Ryals RC; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
  • Weller KK; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
  • Pennesi ME; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
  • Sahay G; Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA. Electronic address: sahay@ohsu.edu.
J Control Release ; 303: 91-100, 2019 06 10.
Article em En | MEDLINE | ID: mdl-30986436
ABSTRACT
Retinal gene therapy has had unprecedented success in generating treatments that can halt vision loss. However, immunogenic response and long-term toxicity with the use of viral vectors remain a concern. Non-viral vectors are relatively non-immunogenic, scalable platforms that have had limited success with DNA delivery to the eye. Messenger RNA (mRNA) therapeutics has expanded the ability to achieve high gene expression while eliminating unintended genomic integration or the need to cross the restrictive nuclear barrier. Lipid-based nanoparticles (LNPs) remain at the forefront of potent delivery vectors for nucleic acids. Herein, we tested eleven different LNP variants for their ability to deliver mRNA to the back of the eye. LNPs that contained ionizable lipids with low pKa and unsaturated hydrocarbon chains showed the highest amount of reporter gene transfection in the retina. The kinetics of gene expression showed a rapid onset (within 4 h) that persisted for 96 h. The gene delivery was cell-type specific with majority of the expression in the retinal pigmented epithelium (RPE) and limited expression in the Müller glia. LNP-delivered mRNA can be used to treat monogenic retinal degenerative disorders of the RPE. The transient nature of mRNA-based therapeutics makes it desirable for applications that are directed towards retinal reprogramming or genome editing. Overall, non-viral delivery of RNA therapeutics to diverse cell types within the retina can provide transformative new approaches to prevent blindness.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA Mensageiro / Técnicas de Transferência de Genes / Olho / Nanopartículas Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA Mensageiro / Técnicas de Transferência de Genes / Olho / Nanopartículas Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article