Your browser doesn't support javascript.
loading
Identification of rare variants in cardiac sodium channel ß4-subunit gene SCN4B associated with ventricular tachycardia.
Yang, Qin; Xiong, Hongbo; Xu, Chengqi; Huang, Yuan; Tu, Xin; Wu, Gang; Fu, Fenfen; Wang, Zhijie; Wang, Longfei; Zhao, Yuanyuan; Li, Sisi; Huang, Yufeng; Wang, Chuchu; Wang, Dan; Yao, Yufeng; Wang, Fan; Wang, Yongbo; Xue, Yu; Wang, Pengyun; Chen, Qiuyun; Pu, Jielin; Wang, Qing K.
Afiliação
  • Yang Q; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
  • Xiong H; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Xu C; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Huang Y; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Tu X; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Wu G; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Fu F; Renmin Hospital, Wuhan University, Wuhan, People's Republic of China.
  • Wang Z; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Wang L; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Zhao Y; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Li S; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Huang Y; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Wang C; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Wang D; School of Life Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, People's Republic of China.
  • Yao Y; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Wang F; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Wang Y; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Xue Y; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Wang P; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Chen Q; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
  • Pu J; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. chenq3@ccf.org.
  • Wang QK; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA. chenq3@ccf.org.
Mol Genet Genomics ; 294(4): 1059-1071, 2019 Aug.
Article em En | MEDLINE | ID: mdl-31020414
ABSTRACT
Ventricular tachycardia (VT) causes sudden cardiac death, however, the majority of risk genes for VT remain unknown. SCN4B encodes a ß-subunit, Navß4, for the voltage-gated cardiac sodium channel complex involved in generation and conduction of the cardiac action potential. We hypothesized that genomic variants in SCN4B increase the risk of VT. We used high-resolution melt analysis followed by Sanger sequencing to screen 199 VT patients to identify nonsynonymous variants in SCN4B. Two nonsynonymous heterozygous variants in SCN4B were identified in VT patients, including p.Gly8Ser in four VT patients and p.Ala145Ser in one VT patient. Case-control association studies were used to assess the association between variant p.Gly8Ser and VT in two independent populations for VT (299 VT cases vs. 981 controls in population 1 and 270 VT patients vs. 639 controls in population 2). Significant association was identified between p.Gly8Ser and VT in population 1 (P = 1.21 × 10-4, odds ratio or OR = 11.04), and the finding was confirmed in population 2 (P = 0.03, OR = 3.62). The association remained highly significant in the combined population (P = 3.09 × 10-5, OR = 6.17). Significant association was also identified between p.Gly8Ser and idiopathic VT (P = 1.89 × 10-5, OR = 7.27). Functional analysis with Western blotting showed that both p.Gly8Ser and p.Ala145Ser variants significantly reduced the expression level of Navß4. Based on 2015 ACMG Standards and Guidelines, p.Gly8Ser and p.Ala145Ser can be classified as the pathogenic and likely pathogenic variant, respectively. Our data suggest that SCN4B is a susceptibility gene for common VT and idiopathic VT and link rare SCN4B variants with large effects (OR = 6.17-7.27) to common VT.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Taquicardia Ventricular / Análise de Sequência de DNA / Substituição de Aminoácidos / Subunidade beta-4 do Canal de Sódio Disparado por Voltagem Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Taquicardia Ventricular / Análise de Sequência de DNA / Substituição de Aminoácidos / Subunidade beta-4 do Canal de Sódio Disparado por Voltagem Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article