Your browser doesn't support javascript.
loading
Super-Toughened Poly(lactic Acid) with Poly(ε-caprolactone) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate by Reactive Melt Blending.
Hou, Ao-Lin; Qu, Jin-Ping.
Afiliação
  • Hou AL; National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China. houaolin2016@163.com.
  • Qu JP; National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China. jpqu@scut.edu.cn.
Polymers (Basel) ; 11(5)2019 May 01.
Article em En | MEDLINE | ID: mdl-31052419
ABSTRACT
In recent years, poly(lactic acid) (PLA) has attracted more and more attention as one of the most promising biobased and biodegradable polymers. However, the inherent brittleness significantly limits its wide application. Here, ternary blends of PLA, poly(ε-caprolactone) (PCL) with various amounts of ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) terpolymer were fabricated through reactive melt blending in order to improve the toughness of PLA. The effect of different addition amounts of EMA-GMA on the mechanical properties, interfacial compatibility and phase morphology of PLA/PCL blends were studied. The reactions between the epoxy groups of EMA-GMA and carboxyl and hydroxyl end groups of PLA and PCL were investigated thorough a Fourier transform infrared (FT-IR). The miscibility and thermal behavior of the blends were studied through a dynamic mechanical analysis (DMA), differential scanning calorimetric (DSC) and X-ray diffraction (XRD). The phase morphology and impact fracture surface of the blends were also investigated through a scanning electron microscope (SEM). With the addition of 8 phr EMA-GMA, a PLA/PCL (90 wt %10 wt %)/EMA-GMA ternary blend presenting a suitable multiple stacked phase structure with an optimum interfacial adhesion exhibited an elongation at break of 500.94% and a notched impact strength of 64.31 kJ/m2 with a partial break impact behavior. Finally, the toughening mechanism of the supertough PLA based polymers have been established based on the above analysis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article