Your browser doesn't support javascript.
loading
Cardanol and Eugenol Based Flame Retardant Epoxy Monomers for Thermostable Networks.
Ecochard, Yvan; Decostanzi, Mélanie; Negrell, Claire; Sonnier, Rodolphe; Caillol, Sylvain.
Afiliação
  • Ecochard Y; ICGM, UMR 5253⁻CNRS, Université de Montpellier, ENSCM, 240 Avenue Emile Jeanbrau 34296 Montpellier, France. yvan.ecochard@enscm.fr.
  • Decostanzi M; ICGM, UMR 5253⁻CNRS, Université de Montpellier, ENSCM, 240 Avenue Emile Jeanbrau 34296 Montpellier, France. melanie.decostanzi@gmail.com.
  • Negrell C; ICGM, UMR 5253⁻CNRS, Université de Montpellier, ENSCM, 240 Avenue Emile Jeanbrau 34296 Montpellier, France. claire.negrell@enscm.fr.
  • Sonnier R; C2MA, IMT ⁻ Mines Alès, 6, avenue de Clavières, 30100 Alès, France. rodolphe.sonnier@mines-ales.fr.
  • Caillol S; ICGM, UMR 5253⁻CNRS, Université de Montpellier, ENSCM, 240 Avenue Emile Jeanbrau 34296 Montpellier, France. sylvain.caillol@enscm.fr.
Molecules ; 24(9)2019 May 10.
Article em En | MEDLINE | ID: mdl-31083463
ABSTRACT
Epoxy materials have attracted attention for many applications that require fireproof performance; however, the utilization of hazardous reagents brings about potential damage to human health. Eugenol and cardanol are renewable, harmless resources (according to ECHA) that allow the achievement of synthesis of novel phosphorylated epoxy monomers to be used as reactive flame retardants. These epoxy building blocks are characterized by 1H NMR and 31P NMR (nuclear magnetic resonance) and reacted with a benzylic diamine to give bio-based flame-retardant thermosets. Compared to DGEBA (Bisphenol A Diglycidyl Ether)-based material, these biobased thermosets differ by their cross-linking ratio, the nature of the phosphorylated function and the presence of an aliphatic chain. Eugenol has led to thermosets with higher glass transition temperatures due to a higher aromatic density. The flame-retardant properties were tested by thermogravimetric analyses (TGA), a pyrolysis combustion flow calorimeter (PCFC) and a cone calorimeter. These analyses demonstrated the efficiency of phosphorus by reducing significantly the peak heat release rate (pHRR), the total heat release (THR) and the effective heat of combustion (EHC). Moreover, the cone calorimeter test exhibited an intumescent phenomenon with the residues of phosphorylated eugenol thermosets. Lastly, the higher flame inhibition potential was highlighted for the phosphonate thermoset.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenóis / Eugenol / Retardadores de Chama Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenóis / Eugenol / Retardadores de Chama Idioma: En Ano de publicação: 2019 Tipo de documento: Article