Your browser doesn't support javascript.
loading
Data-driven modeling based on kernel extreme learning machine for sugarcane juice clarification.
Meng, Yanmei; Yu, Shuangshuang; Wang, Hui; Qin, Johnny; Xie, Yanpeng.
Afiliação
  • Meng Y; College of Mechanical Engineering Guangxi University Nanning China.
  • Yu S; College of Mechanical Engineering Guangxi University Nanning China.
  • Wang H; College of Mechanical Engineering Guangxi University Nanning China.
  • Qin J; Energy, Commonwealth Scientific and Industrial Research Organisation Pullenvale Queensland Australia.
  • Xie Y; College of Mechanical Engineering Guangxi University Nanning China.
Food Sci Nutr ; 7(5): 1606-1614, 2019 May.
Article em En | MEDLINE | ID: mdl-31139373
Clarification of sugarcane juice is an important operation in the production process of sugar industry. The gravity purity and the color value of juice are the two most important evaluation indexes in the cane sugar production using the sulphitation clarification method. However, in the actual operation, the measurement of these two indexes is usually obtained by offline experimental titration, which makes it impossible to timely adjust the system indicators. A data-driven modeling based on kernel extreme learning machine is proposed to predict the gravity purity of juice and the color value of clear juice. The model parameters are optimized by particle swarm optimization. Experiments are conducted to verify the effectiveness and superiority of the modeling method. Compared with BP neural network, radial basis neural network, and support vector machine, the model has a good performance, which proves the reliability of the model.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article