Your browser doesn't support javascript.
loading
Visualization of ultrafast melting initiated from radiation-driven defects in solids.
Mo, Mianzhen; Murphy, Samuel; Chen, Zhijiang; Fossati, Paul; Li, Renkai; Wang, Yongqiang; Wang, Xijie; Glenzer, Siegfried.
Afiliação
  • Mo M; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Murphy S; Engineering Department, Lancaster University, Lancaster LA1 4YW, UK.
  • Chen Z; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Fossati P; Department of Materials, Imperial College London, South Kensington, London SW7 2AB, UK.
  • Li R; DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris Saclay, F-91191 Gif-sur-Yvette, France.
  • Wang Y; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Wang X; Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
  • Glenzer S; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
Sci Adv ; 5(5): eaaw0392, 2019 May.
Article em En | MEDLINE | ID: mdl-31139748
ABSTRACT
Materials exposed to extreme radiation environments such as fusion reactors or deep spaces accumulate substantial defect populations that alter their properties and subsequently the melting behavior. The quantitative characterization requires visualization with femtosecond temporal resolution on the atomic-scale length through measurements of the pair correlation function. Here, we demonstrate experimentally that electron diffraction at relativistic energies opens a new approach for studies of melting kinetics. Our measurements in radiation-damaged tungsten show that the tungsten target subjected to 10 displacements per atom of damage undergoes a melting transition below the melting temperature. Two-temperature molecular dynamics simulations reveal the crucial role of defect clusters, particularly nanovoids, in driving the ultrafast melting process observed on the time scale of less than 10 ps. These results provide new atomic-level insights into the ultrafast melting processes of materials in extreme environments.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article