Your browser doesn't support javascript.
loading
mTOR Senses Intracellular pH through Lysosome Dispersion from RHEB.
Walton, Zandra E; Brooks, Rebekah C; Dang, Chi V.
Afiliação
  • Walton ZE; Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA.
  • Brooks RC; Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA.
  • Dang CV; Ludwig Institute for Cancer Research, New York, NY, 10017, USA.
Bioessays ; 41(7): e1800265, 2019 07.
Article em En | MEDLINE | ID: mdl-31157925
Acidity, generated in hypoxia or hypermetabolic states, perturbs homeostasis and is a feature of solid tumors. That acid peripherally disperses lysosomes is a three-decade-old observation, yet one little understood or appreciated. However, recent work has recognized the inhibitory impact this spatial redistribution has on mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of metabolism. This finding argues for a paradigm shift in localization of mTORC1 activator Ras homolog enriched in brain (RHEB), a conclusion several others have now independently reached. Thus, mTORC1, known to sense amino acids, mitogens, and energy to restrict biosynthesis to times of adequate resources, also senses pH and, via dampened mTOR-governed synthesis of clock proteins, regulates the circadian clock to achieve concerted responses to metabolic stress. While this may allow cancer to endure metabolic deprivation, immune cell mTOR signaling likewise exhibits pH sensitivity, suggesting that suppression of antitumor immune function by solid tumor acidity may additionally fuel cancers, an obstacle potentially reversible through therapeutic pH manipulation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Serina-Treonina Quinases TOR / Alvo Mecanístico do Complexo 1 de Rapamicina / Proteína Enriquecida em Homólogo de Ras do Encéfalo / Lisossomos Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Serina-Treonina Quinases TOR / Alvo Mecanístico do Complexo 1 de Rapamicina / Proteína Enriquecida em Homólogo de Ras do Encéfalo / Lisossomos Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article