Your browser doesn't support javascript.
loading
Spectroscopy Identification of the Bimetallic Surface of Metal-Organic Framework-Confined Pt-Sn Nanoclusters with Enhanced Chemoselectivity in Furfural Hydrogenation.
Goh, Tian Wei; Tsung, Chia-Kuang; Huang, Wenyu.
Afiliação
  • Goh TW; Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States.
  • Tsung CK; Department of Chemistry , Boston College , Boston , Massachusetts 02467 , United States.
  • Huang W; Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States.
ACS Appl Mater Interfaces ; 11(26): 23254-23260, 2019 Jul 03.
Article em En | MEDLINE | ID: mdl-31252478
ABSTRACT
Research and development in bimetallic nanoparticles have gained great interest over their monometallic counterparts because of their distinct and unique properties in a wide range of applications such as catalysis, energy storage, and bio/plasmonic imaging. Identification and characterization of these bimetallic surfaces for application in heterogeneous catalysis remain a challenge and heavily rely on advanced characterization techniques such as aberration-corrected electron microscopy and synchrotron X-ray absorption studies. In this article, we have reported a strategy to prepare sub-2 nm bimetallic Pt-Sn nanoclusters confined in the pores of a Zr-based metal-organic framework (MOF). The Pt-Sn nanoclusters encapsulated in the Zr-MOF pores show enhanced chemoselectivity from 51 to 93% in an industrially relevant reaction, furfural hydrogenation to furfuryl alcohol. The presence of bimetallic Pt-Sn surfaces was investigated by a surface-sensitive characterization technique utilizing diffuse reflectance infrared Fourier transform spectroscopy of adsorbed CO to probe the bimetallic surface of the encapsulated ultrafine Pt-Sn nanocluster. Complementary techniques such as aberration-corrected high-angle annular dark-field scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were also used to characterize the Pt-Sn nanoclusters.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article