Your browser doesn't support javascript.
loading
Single-Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions.
Qiu, Yuan; Peng, Xianyun; Lü, Fang; Mi, Yuying; Zhuo, Longchao; Ren, Junqiang; Liu, Xijun; Luo, Jun.
Afiliação
  • Qiu Y; Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
  • Peng X; Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
  • Lü F; Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
  • Mi Y; Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
  • Zhuo L; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
  • Ren J; State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.
  • Liu X; Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
  • Luo J; Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
Chem Asian J ; 14(16): 2770-2779, 2019 Aug 16.
Article em En | MEDLINE | ID: mdl-31290592
Powered by renewable electricity, the electrochemical reduction of nitrogen to ammonia is proposed as a promising alternative to the energy- and capital-intensive Haber-Bosch process, and has thus attracted much attention from the scientific community. However, this process suffers from low NH3 yields and Faradaic efficiency. The development of more effective electrocatalysts is of vital importance for the practical applications of this reaction. Of the reported catalysts, single-atom catalysts (SACs) show the significant advantages of efficient atom utilization and unsaturated coordination configurations, which offer great scope for optimizing their catalytic performance. Herein, progress in state-of-the-art SACs applied in the electrocatalytic N2 reduction reaction (NRR) is discussed, and the main advantages and challenges for developing more efficient electrocatalysts are also highlighted.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article