Decision Tree Pattern Recognition Model for Radio Frequency Interference Suppression in NQR Experiments.
Sensors (Basel)
; 19(14)2019 Jul 17.
Article
em En
| MEDLINE
| ID: mdl-31319623
Radio frequency interference places a major limitation on the in-situ use of unshielded nuclear quadrupole or nuclear magnetic resonance methods in industrial environments for quality control and assurance applications. In this work, we take the detection of contraband in an airport security-type application that is subject to burst mode radio frequency interference as a test case. We show that a machine learning decision tree model is ideally suited to the automated identification of interference bursts, and can be used in support of automated interference suppression algorithms. The usefulness of the data processed additionally by the new algorithm compared to traditional processing is shown in a receiver operating characteristic (ROC) analysis of a validation trial designed to mimic a security contraband detection application. The results show a highly significant increase in the area under the ROC curve from 0.580 to 0.906 for the proper identification of recovered data distorted by interfering bursts.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Health_economic_evaluation
/
Prognostic_studies
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article