Your browser doesn't support javascript.
loading
Highly conserved influenza T cell epitopes induce broadly protective immunity.
Eickhoff, Christopher S; Terry, Frances E; Peng, Linda; Meza, Krystal A; Sakala, Isaac G; Van Aartsen, Daniel; Moise, Leonard; Martin, William D; Schriewer, Jill; Buller, R Mark; De Groot, Anne S; Hoft, Daniel F.
Afiliação
  • Eickhoff CS; Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States.
  • Terry FE; EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States.
  • Peng L; Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States.
  • Meza KA; Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States.
  • Sakala IG; Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States.
  • Van Aartsen D; Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States.
  • Moise L; EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States; University of Rhode Island, Institute for Immunology and Informatics, Department of Cell and Molecular Biology, 80 Washington Street, Providence, RI 02903, United States.
  • Martin WD; EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States.
  • Schriewer J; Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States.
  • Buller RM; Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States.
  • De Groot AS; EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States; University of Rhode Island, Institute for Immunology and Informatics, Department of Cell and Molecular Biology, 80 Washington Street, Providence, RI 02903, United States.
  • Hoft DF; Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States; Saint Louis University, Department of Molecular Microbiology & Immunology, 11
Vaccine ; 37(36): 5371-5381, 2019 08 23.
Article em En | MEDLINE | ID: mdl-31331771
Influenza world-wide causes significant morbidity and mortality annually, and more severe pandemics when novel strains evolve to which humans are immunologically naïve. Because of the high viral mutation rate, new vaccines must be generated based on the prevalence of circulating strains every year. New approaches to induce more broadly protective immunity are urgently needed. Previous research has demonstrated that influenza-specific T cells can provide broadly heterotypic protective immunity in both mice and humans, supporting the rationale for developing a T cell-targeted universal influenza vaccine. We used state-of-the art immunoinformatic tools to identify putative pan-HLA-DR and HLA-A2 supertype-restricted T cell epitopes highly conserved among > 50 widely diverse influenza A strains (representing hemagglutinin types 1, 2, 3, 5, 7 and 9). We found influenza peptides that are highly conserved across influenza subtypes that were also predicted to be class I epitopes restricted by HLA-A2. These peptides were found to be immunoreactive in HLA-A2 positive but not HLA-A2 negative individuals. Class II-restricted T cell epitopes that were highly conserved across influenza subtypes were identified. Human CD4+ T cells were reactive with these conserved CD4 epitopes, and epitope expanded T cells were responsive to both H1N1 and H3N2 viruses. Dendritic cell vaccines pulsed with conserved epitopes and DNA vaccines encoding these epitopes were developed and tested in HLA transgenic mice. These vaccines were highly immunogenic, and more importantly, vaccine-induced immunity was protective against both H1N1 and H3N2 influenza challenges. These results demonstrate proof-of-principle that conserved T cell epitopes expressed by widely diverse influenza strains can induce broadly protective, heterotypic influenza immunity, providing strong support for further development of universally relevant multi-epitope T cell-targeting influenza vaccines.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vacinas contra Influenza / Influenza Humana Tipo de estudo: Risk_factors_studies Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vacinas contra Influenza / Influenza Humana Tipo de estudo: Risk_factors_studies Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article