Your browser doesn't support javascript.
loading
MicroRNA-30-3p Suppresses Inflammatory Factor-Induced Endothelial Cell Injury by Targeting TCF21.
Zhou, Zhenyu; Chen, Yu; Zhang, Dongying; Wu, Shiyong; Liu, Tao; Cai, Guoqiang; Qin, Shu.
Afiliação
  • Zhou Z; Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
  • Chen Y; Department of Cardiology, Nanchong Central Hospital, The Second Clinical School of North Sichuan Medical College, Nanchong, China.
  • Zhang D; Comprehensive Ward, Nanchong Central Hospital, The Second Clinical School of North Sichuan Medical College, Nanchong, China.
  • Wu S; Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
  • Liu T; Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
  • Cai G; Department of Cardiology, Nanchong Central Hospital, The Second Clinical School of North Sichuan Medical College, Nanchong, China.
  • Qin S; Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
Mediators Inflamm ; 2019: 1342190, 2019.
Article em En | MEDLINE | ID: mdl-31354385
Atherosclerosis is one of the leading causes of mortality worldwide. Growing evidence suggested that miRNAs contributed to the progression of atherosclerosis. miR-30-5p was found involved in various diseases. However, the role of miR-30-5p in regulation of atherosclerosis is not known. Here, we aim to investigate the effects of miR-30-5p on regulating the progression of atherosclerosis. The expression levels of miR-30-5p in serum collected from atherosclerosis patients and normal healthy people were analyzed by qRT-PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway bioinformatics were carried out to reveal the possible signaling pathways involved in the mode of action of miR-30-5p. A potential target gene of miRNA-30-5p was searched and examined by a luciferase reporter assay. ELISA, Western blot, proliferation, and flow cytometry assays were performed to assess the biological functional role of miR-30-5p in vitro. Also, an in vitro monocyte-endothelial cell coculture model was used to study the functional role of miR-30-5p in atherosclerosis. We found that miR-30-5p was significantly decreased in serum samples from atherosclerosis patients compared with control subjects. GO and KEGG analysis results showed that miR-30-5p is highly associated with genetic profile of cardiovascular disease. TCF21 was verified as a target gene of miR-30-5p. Overexpression of miR-30-5p in THP-1 not only protected endothelial cell viability but also inhibited endothelial cell apoptosis, and similar results were observed in cells with that of TCF21 knocked down. Moreover, miR-30-5p decreased the expression levels of lactate dehydrogenase (LDH) and tumor necrosis factor-α (TNF-α) and reduced reactive oxygen species (ROS) accumulation. NF-κB and MAPK/p38 pathways played an indispensable role in the protection ability of miR-30-5p against atherosclerosis. Our results reveal that miR-30-5p suppresses the progression of atherosclerosis through targeting TCF21 in vitro. Therefore, the miR-30-5p-TCF21-MAPK/p38 signaling pathway may be a potential biomarker or therapeutic target in atherosclerosis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Fatores de Transcrição Hélice-Alça-Hélice Básicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Fatores de Transcrição Hélice-Alça-Hélice Básicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article