A non-covalent inhibitor XMU-MP-3 overrides ibrutinib-resistant BtkC481S mutation in B-cell malignancies.
Br J Pharmacol
; 176(23): 4491-4509, 2019 12.
Article
em En
| MEDLINE
| ID: mdl-31364164
BACKGROUND AND PURPOSE: Bruton's tyrosine kinase (BTK) plays a key role in B-cell receptor signalling by regulating cell proliferation and survival in various B-cell malignancies. Covalent low-MW BTK kinase inhibitors have shown impressive clinical efficacy in B-cell malignancies. However, the mutant BtkC481S poses a major challenge in the management of B-cell malignancies by disrupting the formation of the covalent bond between BTK and irreversible inhibitors, such as ibrutinib. The present studies were designed to develop novel BTK inhibitors targeting ibrutinib-resistant BtkC481S mutation. EXPERIMENTAL APPROACH: BTK-Ba/F3, BTK(C481S)-Ba/F3 cells, and human malignant B-cells JeKo-1, Ramos, and NALM-6 were used to evaluate cellular potency of BTK inhibitors. The in vitro pharmacological efficacy and compound selectivity were assayed via cell viability, colony formation, and BTK-mediated signalling. A tumour xenograft model with BTK-Ba/F3, Ramos and BTK(C481S)-Ba/F3 cells in Nu/nu BALB/c mice was used to assess in vivo efficacy of XMU-MP-3. KEY RESULTS: XMU-MP-3 is one of a group of low MW compounds that are potent non-covalent BTK inhibitors. XMU-MP-3 inhibited both BTK and the acquired mutant BTKC481S, in vitro and in vivo. Further computational modelling, site-directed mutagenesis analysis, and structure-activity relationships studies indicated that XMU-MP-3 displayed a typical Type-II inhibitor binding mode. CONCLUSION AND IMPLICATIONS: XMU-MP-3 directly targets the BTK signalling pathway in B-cell lymphoma. These findings establish XMU-MP-3 as a novel inhibitor of BTK, which could serve as both a tool compound and a lead for further drug development in BTK relevant B-cell malignancies, especially those with the acquired ibrutinib-resistant C481S mutation.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Pirazóis
/
Pirimidinas
/
Leucemia Linfocítica Crônica de Células B
/
Resistencia a Medicamentos Antineoplásicos
/
Inibidores de Proteínas Quinases
/
Tirosina Quinase da Agamaglobulinemia
/
Antineoplásicos
Tipo de estudo:
Prognostic_studies
Limite:
Animals
/
Female
/
Humans
/
Male
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article