Design of a Multifunctional Indium-Organic Framework: Fluorescent Sensing of Nitro Compounds, Physical Adsorption, and Photocatalytic Degradation of Organic Dyes.
Inorg Chem
; 58(16): 11220-11230, 2019 Aug 19.
Article
em En
| MEDLINE
| ID: mdl-31368311
The detection of nitro compounds and removal of organic dyes remain urgent issues because they are poisonous to humans. Taking advantage of metal-organic framework (MOF) materials, we demonstrate herein an indium-organic framework (InOF) exhibiting sensitive fluorescence sensing of nitro compounds, prominent dye capture, and excellent photodegradation of dyes. By using 4,4',4â³-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB), an amino-functionalized BTB-like linker, the 3D SNNU-110 structure ({[In3OCl(H2O)2(TATAB)2]}n) is formed. SNNU-110 shows a 3,6-connected 3,6T22 topology with TATAB and [In3O(CO2)6] tricapped trigonal-prismatic clusters as 3- and 6-connected nodes. Thanks to the fluorescence properties and amine recognition sites of TATAB, SNNU-110 exhibits excellent performance of fluorescence quenching for six electron-deficient nitroaromatics. The intercrossing 1D channels in SNNU-110 formed from the a- and b-axis directions with dimensions of about 18 Å × 11 Å can capture diverse cationic, anionic, or neutral dyes effectively. What is more, the existence of an inorganic [In3O] cluster enable SNNU-110 to be a good photocatalyst. Upon irradiation with a 300 W xenon lamp, SNNU-110 shows outstanding photocatalytic activity toward rhodamine B (RhB) and methylene blue (MB), and there was almost no degradation. The catalytic activity can retain about 94.6% (RhB) and 93.1% (MB), respectively. Overall, SNNU-110 fully demonstrates the power of multicomponent MOFs, which provide a feasible route for the design of functional materials toward to pollutant identification and removal applications.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article