Your browser doesn't support javascript.
loading
Competing Endogenous RNA Networks Underlying Anatomical and Physiological Characteristics of Poplar Wood in Acclimation to Low Nitrogen Availability.
Lu, Yan; Deng, Shurong; Li, Zhuorong; Wu, Jiangting; Liu, Qifeng; Liu, Wenzhe; Yu, Wen-Jian; Zhang, Yuhong; Shi, Wenguang; Zhou, Jing; Li, Hong; Polle, Andrea; Luo, Zhi-Bin.
Afiliação
  • Lu Y; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
  • Deng S; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
  • Li Z; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
  • Wu J; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
  • Liu Q; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
  • Liu W; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
  • Yu WJ; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
  • Zhang Y; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
  • Shi W; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
  • Zhou J; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
  • Li H; Postgraduate School, Chinese Academy of Forestry, Beijing, P. R. China.
  • Polle A; Forest Botany and Tree Physiology, University of Goettingen, B�sgenweg 2, G�ttingen, Germany.
  • Luo ZB; State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China.
Plant Cell Physiol ; 60(11): 2478-2495, 2019 Nov 01.
Article em En | MEDLINE | ID: mdl-31368491
Although poplar plantations are often established on nitrogen (N)-poor soil, the physiological and molecular mechanisms underlying wood properties of poplars in acclimation to low N availability remain largely unknown. To investigate wood properties of poplars in acclimation to low N, Populus � canescens saplings were exposed to either 50 (low N) or 500 (normal N) �M NH4NO3 for 2 months. Low N resulted in decreased xylem width and cell layers of the xylem (the number of cells counted along the ray parenchyma on the stem cross section), narrower lumina of vessels and fibers, greater thickness of double fiber walls (the walls between two adjacent fiber cells), more hemicellulose and lignin deposition, and reduced cellulose accumulation in poplar wood. Consistently, concentrations of gibberellins involved in cell size determination and the abundance of various metabolites including amino acids, carbohydrates and precursors for cell wall biosynthesis were decreased in low N-supplied wood. In line with these anatomical and physiological changes, a number of mRNAs, long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) were significantly differentially expressed. Competing endogenous RNA regulatory networks were identified in the wood of low N-treated poplars. Overall, these results indicate that miRNAs-lncRNAs-mRNAs networks are involved in regulating wood properties and physiological processes of poplars in acclimation to low N availability.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reguladores de Crescimento de Plantas / Populus / Metabolômica / Aminoácidos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reguladores de Crescimento de Plantas / Populus / Metabolômica / Aminoácidos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article