Your browser doesn't support javascript.
loading
Stem cell factor and granulocyte colony-stimulating factor promote brain repair and improve cognitive function through VEGF-A in a mouse model of CADASIL.
Ping, Suning; Qiu, Xuecheng; Kyle, Michele; Hughes, Karen; Longo, John; Zhao, Li-Ru.
Afiliação
  • Ping S; Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
  • Qiu X; Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
  • Kyle M; Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
  • Hughes K; Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
  • Longo J; Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
  • Zhao LR; Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA. Electronic address: ZHAOL@upstate.edu.
Neurobiol Dis ; 132: 104561, 2019 12.
Article em En | MEDLINE | ID: mdl-31376480
ABSTRACT
Cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy (CADASIL) is a cerebral small vascular disease caused by NOTCH3 gene mutation in vascular smooth muscle cells (VSMCs), leading to ischemic stroke and vascular dementia. To date, the pathogenesis of CADASIL remains poorly understood, and there is no treatment that can slow the progression of CADASIL. Using a transgenic mouse model of CADASIL (TgNotch3R90C), this study reveals novel findings for understanding CADASIL pathogenesis that decreased cerebral vascular endothelial growth factor (VEGF/VEGF-A) is linked to reduced cerebral blood vessel density. Reduced endothelial cell (EC) proliferation and angiogenesis are seen in TgNotch3R90C mouse brain-isolated ECs. Decreased dendrites, axons, and synapses in the somatosensory and motor cortex layer 2/3 and in the hippocampal CA1, and reduced neurogenesis in both the subventricular zone and subgranular zone occur in 15-month-old TgNotch3R90C mice. These reductions in neuron structures, synapses, and neurogenesis are significantly correlated to decreased cerebral vasculature in the corresponding areas. Impaired spatial learning and memory in TgNotch3R90C mice are significantly correlated with the reduced cerebral vasculature, neuron structures, and synapses. Repeated treatment of stem cell factor and granulocyte colony-stimulating factor (SCF+G-CSF) at 9 and 10 months of age improves cognitive function, increases cerebral VEGF/VEGF-A, restores cerebral vasculature, and enhances regeneration of neuronal structures, synaptogenesis and neurogenesis in TgNotch3R90C mice. Pretreatment with Avastin, an angiogenesis inhibitor by neutralizing VEGF-A, completely eliminates the SCF+G-CSF-enhanced cognitive function, vascular and neuronal structure regeneration, synaptogenesis and neurogenesis in TgNotch3R90C mice. SCF+G-CSF-enhanced EC proliferation and angiogenesis in TgNotch3R90C mouse brain-isolated ECs are also blocked by Avastin pretreatment. These data suggest that SCF+G-CSF treatment may repair Notch3R90C mutation-damaged brain through the VEGF-A-mediated angiogenesis. This study provides novel insight into the involvement of VEGF/VEGF-A in the pathogenesis of CADASIL and sheds light on the mechanism underlying the SCF+G-CSF-enhanced brain repair in CADASIL.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Fator Estimulador de Colônias de Granulócitos / Fator de Células-Tronco / Fator A de Crescimento do Endotélio Vascular / CADASIL / Disfunção Cognitiva Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Fator Estimulador de Colônias de Granulócitos / Fator de Células-Tronco / Fator A de Crescimento do Endotélio Vascular / CADASIL / Disfunção Cognitiva Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article