UV Photofragmentation of Cold Cytosine-M+ Complexes (M+: Na+, K+, Ag+).
J Phys Chem A
; 123(36): 7744-7750, 2019 Sep 12.
Article
em En
| MEDLINE
| ID: mdl-31408342
The UV photofragmentation spectra of cold cytosine-M+ complexes (M+: Na+, K+, Ag+) were recorded and analyzed through comparison with geometry optimizations and frequency calculations of the ground and excited states at the SCS-CC2/Def2-SVPD level of theory. While in all complexes, the ground state minimum geometry is planar (Cs symmetry), the ππ* state minimum geometry has the NH2 group slightly twisted and an out-of-plane metal cation. This was confirmed by comparing the simulated ππ* Franck-Condon spectra with the vibrationally resolved photofragmentation spectra of CytNa+ and CytK+. Vertical excitation transitions were also calculated to evaluate the energies of the CT states involving the transfer of an electron from the Cyt moiety to M+. For both CytK+ and CytNa+ complexes, the first CT state corresponds to an electron transfer from the cytosine aromatic π ring to the antibonding σ* orbital centered on the alkali cation. This πσ* state is predicted to lie much higher in energy (>6 eV) than the band origin of the π-π* electronic transition (around 4.3 eV) unlike what is observed for the CytAg+ complex for which the first excited state has a nOσ* electronic configuration. This is the reason for the absence of the Cyt+ + M charge transfer fragmentation channel for CytK+ and CytNa+ complexes.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article