Your browser doesn't support javascript.
loading
Scaling Organic Electrochemical Transistors Down to Nanosized Channels.
D'Angelo, Pasquale; Marasso, Simone L; Verna, Alessio; Ballesio, Alberto; Parmeggiani, Matteo; Sanginario, Alessandro; Tarabella, Giuseppe; Demarchi, Danilo; Pirri, Candido F; Cocuzza, Matteo; Iannotta, Salvatore.
Afiliação
  • D'Angelo P; Consiglio Nazionale delle Ricerche-Istituto dei Materiali per l'Elettronica ed il Magnetismo (IMEM), P.co Area delle Scienze 37/A, Parma, 43124, Italy.
  • Marasso SL; Consiglio Nazionale delle Ricerche-Istituto dei Materiali per l'Elettronica ed il Magnetismo (IMEM), P.co Area delle Scienze 37/A, Parma, 43124, Italy.
  • Verna A; Chilab-Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Chivasso (Turin), 10034, Italy.
  • Ballesio A; Chilab-Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Chivasso (Turin), 10034, Italy.
  • Parmeggiani M; Chilab-Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Chivasso (Turin), 10034, Italy.
  • Sanginario A; Chilab-Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Chivasso (Turin), 10034, Italy.
  • Tarabella G; Center for Sustainable Future Technologies, Italian Institute of Technology, Turin, 10129, Italy.
  • Demarchi D; Electronic and Telecommunication Department, Politecnico di Torino, Turin, 10129, Italy.
  • Pirri CF; Camlin Italy Srl, Strada Budellungo 2, Parma, 43123, Italy.
  • Cocuzza M; Electronic and Telecommunication Department, Politecnico di Torino, Turin, 10129, Italy.
  • Iannotta S; Chilab-Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Chivasso (Turin), 10034, Italy.
Small ; 15(41): e1902332, 2019 10.
Article em En | MEDLINE | ID: mdl-31441219
The perspective of downscaling organic electrochemical transistors (OECTs) in the nanorange is approached by depositing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on electrodes with a nanogap designed and fabricated by electromigration induced break junction (EIBJ) technique. The electrical response of the fabricated devices is obtained by acquiring transfer characteristics in order to clarify the specific main characteristics of OECTs with sub-micrometer-sized active channels (nanogap-OECTs). On the basis of their electrical response to different scan times, the nanogap-OECT shows a maximum transconductance unaffected upon changing scan times in the time window from 1 s to 100 µs, meaning that fast varying signals can be easily acquired with unchanged amplifying performance. Hence, the scaling down of the channel size to the nanometer scale leads to a geometrical paradigm that minimizes effects on device response due to the cationic diffusion into the polymeric channel. A comprehensive study of these features is carried out by an electrochemical impedance spectroscopy (EIS) study, complemented by a quantitative analysis made by equivalent circuits. The propagation of a redox front into the polymer bulk due to ionic diffusion also known as the "intercalation pseudocapacitance" is identified as a limiting factor for the transduction dynamics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article