Your browser doesn't support javascript.
loading
A method of generating multivariate non-normal random numbers with desired multivariate skewness and kurtosis.
Qu, Wen; Liu, Haiyan; Zhang, Zhiyong.
Afiliação
  • Qu W; Department of Psychology, University of Notre Dame, Corbett Family Hall, Notre Dame, IN, 46556, USA. wqu@nd.edu.
  • Liu H; Psychological Sciences, University of California, Merced, CA, USA.
  • Zhang Z; Department of Psychology, University of Notre Dame, Corbett Family Hall, Notre Dame, IN, 46556, USA.
Behav Res Methods ; 52(3): 939-946, 2020 06.
Article em En | MEDLINE | ID: mdl-31452009
In social and behavioral sciences, data are typically not normally distributed, which can invalidate hypothesis testing and lead to unreliable results when being analyzed by methods developed for normal data. The existing methods of generating multivariate non-normal data typically create data according to specific univariate marginal measures such as the univariate skewness and kurtosis, but not multivariate measures such as Mardia's skewness and kurtosis. In this study, we propose a new method of generating multivariate non-normal data with given multivariate skewness and kurtosis. Our approach allows researchers to better control their simulation designs in evaluating the influence of multivariate non-normality.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Projetos de Pesquisa Tipo de estudo: Clinical_trials Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Projetos de Pesquisa Tipo de estudo: Clinical_trials Idioma: En Ano de publicação: 2020 Tipo de documento: Article