Your browser doesn't support javascript.
loading
Adhesive Properties of Adsorbed Layers of Two Recombinant Mussel Foot Proteins with Different Levels of DOPA and Tyrosine.
Bilotto, Pierluigi; Labate, Cristina; De Santo, Maria P; Deepankumar, Kanagavel; Miserez, Ali; Zappone, Bruno.
Afiliação
  • Bilotto P; Dipartimento di Fisica , Università della Calabria , Rende , Italy.
  • Labate C; Institute of Applied Physics , Vienna University of Technology , Vienna , Austria.
  • De Santo MP; Dipartimento di Fisica , Università della Calabria , Rende , Italy.
  • Deepankumar K; Dipartimento di Fisica , Università della Calabria , Rende , Italy.
  • Miserez A; Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR - Nanotec) , c/o Università della Calabria , Ponte P. Bucci, 33/B , 87036 Rende ( CS ), Italy.
  • Zappone B; Biological and Biomimetic Material Laboratory and Center for Biomimetic Sensor Science, School of Materials Science and Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 637553.
Langmuir ; 35(48): 15481-15490, 2019 12 03.
Article em En | MEDLINE | ID: mdl-31465231
ABSTRACT
Using a surface forces apparatus and an atomic force microscope, we characterized the adhesive properties of adsorbed layers of two recombinant variants of Perna viridis foot protein 5 (PVFP-5), the main surface-binding protein in the adhesive plaque of the Asian green mussel. In one variant, all tyrosine residues were modified into 3,4-dihydroxy-l-phenylalanine (DOPA) during expression using a residue-specific incorporation strategy. DOPA is a key molecular moiety underlying underwater mussel adhesion. In the other variant, all tyrosine residues were preserved. The layer was adsorbed on a mica substrate and pressed against an uncoated surface. While DOPA produced a stronger adhesion than tyrosine in contact with the nanoscopic Si3N4 probe of the atomic force microscope, the two variants produced comparable adhesion on the curved macroscopic mica surfaces of the surface forces apparatus. These findings show that the presence of DOPA is not a sufficient condition to generate strong underwater adhesion. Surface chemistry and contact geometry affect the strength and abundance of protein-surface bonds created during adsorption and surface contact. Importantly, the adsorbed protein layer has a random and dynamic polymer-network structure that should be optimized to transmit the tensile stress generated during surface separation to DOPA surface bonds rather than other weaker bonds.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tirosina / Di-Hidroxifenilalanina / Adesivos Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tirosina / Di-Hidroxifenilalanina / Adesivos Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article